Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -13,7 +13,7 @@ import random
|
|
| 13 |
import numpy as np
|
| 14 |
import re
|
| 15 |
import time
|
| 16 |
-
from typing import List, Tuple
|
| 17 |
import os
|
| 18 |
import gc
|
| 19 |
import spaces
|
|
@@ -21,14 +21,8 @@ import spaces
|
|
| 21 |
# Global model variables for memory efficiency
|
| 22 |
tokenizer = None
|
| 23 |
model = None
|
| 24 |
-
current_generator = None
|
| 25 |
device = None
|
| 26 |
|
| 27 |
-
def get_noising_schedule(i, max_it, sharpness=5.0):
|
| 28 |
-
"""Exponential noise schedule for denoising"""
|
| 29 |
-
x = i / max_it
|
| 30 |
-
return (np.exp(-sharpness * x) - np.exp(-sharpness)) / (1 - np.exp(-sharpness))
|
| 31 |
-
|
| 32 |
class ARDiffusionGenerator:
|
| 33 |
"""Base AR-Diffusion generator with shared functionality"""
|
| 34 |
|
|
@@ -58,7 +52,7 @@ class ARDiffusionGenerator:
|
|
| 58 |
"""
|
| 59 |
|
| 60 |
class QualityGenerator(ARDiffusionGenerator):
|
| 61 |
-
"""Quality-focused AR-Diffusion generator
|
| 62 |
|
| 63 |
def filter_logits(self, logits: torch.Tensor, top_k: int = 0, top_p: float = 1.0,
|
| 64 |
temperature: float = 1.0) -> torch.Tensor:
|
|
@@ -194,8 +188,6 @@ class QualityGenerator(ARDiffusionGenerator):
|
|
| 194 |
start_time = time.time()
|
| 195 |
|
| 196 |
for step in range(steps):
|
| 197 |
-
step_start = time.time()
|
| 198 |
-
|
| 199 |
if progress_callback:
|
| 200 |
progress = 0.2 + (step / steps) * 0.7
|
| 201 |
elapsed = time.time() - start_time
|
|
@@ -222,7 +214,6 @@ class QualityGenerator(ARDiffusionGenerator):
|
|
| 222 |
max_replacements = min(3, len(mask_positions))
|
| 223 |
|
| 224 |
sorted_positions = sorted(mask_positions.tolist())
|
| 225 |
-
step_replacements = 0
|
| 226 |
|
| 227 |
for pos in sorted_positions[:max_replacements]:
|
| 228 |
if pos < len(logits):
|
|
@@ -257,7 +248,6 @@ class QualityGenerator(ARDiffusionGenerator):
|
|
| 257 |
break
|
| 258 |
|
| 259 |
current_ids[pos] = new_token
|
| 260 |
-
step_replacements += 1
|
| 261 |
total_replacements += 1
|
| 262 |
|
| 263 |
if progress_callback:
|
|
@@ -307,7 +297,7 @@ class QualityGenerator(ARDiffusionGenerator):
|
|
| 307 |
return response
|
| 308 |
|
| 309 |
class SpeedGenerator(ARDiffusionGenerator):
|
| 310 |
-
"""Speed-focused AR-Diffusion generator
|
| 311 |
|
| 312 |
def filter_logits(self, logits: torch.Tensor, top_k: int = 15, top_p: float = 0.8,
|
| 313 |
temperature: float = 1.0) -> torch.Tensor:
|
|
@@ -425,8 +415,6 @@ class SpeedGenerator(ARDiffusionGenerator):
|
|
| 425 |
# Use mixed precision for speed on GPU
|
| 426 |
with torch.autocast(device_type='cuda', dtype=torch.float16, enabled=self.device.type == 'cuda'):
|
| 427 |
for step in range(steps):
|
| 428 |
-
step_start = time.time()
|
| 429 |
-
|
| 430 |
if progress_callback:
|
| 431 |
progress = 0.2 + (step / steps) * 0.7
|
| 432 |
elapsed = time.time() - start_time
|
|
@@ -448,7 +436,6 @@ class SpeedGenerator(ARDiffusionGenerator):
|
|
| 448 |
max_replace = min(8, len(mask_pos))
|
| 449 |
positions = sorted(mask_pos.tolist())[:max_replace]
|
| 450 |
|
| 451 |
-
step_replacements = 0
|
| 452 |
for pos in positions:
|
| 453 |
if pos < len(logits):
|
| 454 |
token_logits = logits[pos].clone()
|
|
@@ -475,7 +462,6 @@ class SpeedGenerator(ARDiffusionGenerator):
|
|
| 475 |
new_token = top_indices[1].item()
|
| 476 |
|
| 477 |
current_ids[pos] = new_token
|
| 478 |
-
step_replacements += 1
|
| 479 |
total_replacements += 1
|
| 480 |
|
| 481 |
if progress_callback:
|
|
@@ -519,21 +505,61 @@ class SpeedGenerator(ARDiffusionGenerator):
|
|
| 519 |
|
| 520 |
return response
|
| 521 |
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
tokenizer.pad_token = tokenizer.eos_token
|
| 527 |
|
| 528 |
-
model
|
| 529 |
-
|
| 530 |
-
torch_dtype=torch.float16 if device.type == "cuda" else torch.float32,
|
| 531 |
-
device_map="auto" if device.type == "cuda" else None,
|
| 532 |
-
trust_remote_code=True,
|
| 533 |
-
low_cpu_mem_usage=True
|
| 534 |
-
)
|
| 535 |
|
| 536 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 537 |
|
| 538 |
def cleanup_memory():
|
| 539 |
"""Clean up GPU memory"""
|
|
@@ -563,7 +589,6 @@ def chat_function(message, history, mode, progress=gr.Progress()):
|
|
| 563 |
# Generate response with progress callback
|
| 564 |
def progress_callback(pct, status_msg):
|
| 565 |
progress(pct)
|
| 566 |
-
# We'll show status in the performance display instead
|
| 567 |
|
| 568 |
response, stats = generator.generate(message, progress_callback)
|
| 569 |
|
|
@@ -711,11 +736,11 @@ if __name__ == "__main__":
|
|
| 711 |
show_error=True
|
| 712 |
)
|
| 713 |
|
| 714 |
-
#
|
| 715 |
# torch>=2.0.0
|
| 716 |
# transformers>=4.30.0
|
| 717 |
# gradio
|
| 718 |
# numpy
|
| 719 |
# accelerate
|
| 720 |
# spaces
|
| 721 |
-
# peft
|
|
|
|
| 13 |
import numpy as np
|
| 14 |
import re
|
| 15 |
import time
|
| 16 |
+
from typing import List, Tuple
|
| 17 |
import os
|
| 18 |
import gc
|
| 19 |
import spaces
|
|
|
|
| 21 |
# Global model variables for memory efficiency
|
| 22 |
tokenizer = None
|
| 23 |
model = None
|
|
|
|
| 24 |
device = None
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
class ARDiffusionGenerator:
|
| 27 |
"""Base AR-Diffusion generator with shared functionality"""
|
| 28 |
|
|
|
|
| 52 |
"""
|
| 53 |
|
| 54 |
class QualityGenerator(ARDiffusionGenerator):
|
| 55 |
+
"""Quality-focused AR-Diffusion generator"""
|
| 56 |
|
| 57 |
def filter_logits(self, logits: torch.Tensor, top_k: int = 0, top_p: float = 1.0,
|
| 58 |
temperature: float = 1.0) -> torch.Tensor:
|
|
|
|
| 188 |
start_time = time.time()
|
| 189 |
|
| 190 |
for step in range(steps):
|
|
|
|
|
|
|
| 191 |
if progress_callback:
|
| 192 |
progress = 0.2 + (step / steps) * 0.7
|
| 193 |
elapsed = time.time() - start_time
|
|
|
|
| 214 |
max_replacements = min(3, len(mask_positions))
|
| 215 |
|
| 216 |
sorted_positions = sorted(mask_positions.tolist())
|
|
|
|
| 217 |
|
| 218 |
for pos in sorted_positions[:max_replacements]:
|
| 219 |
if pos < len(logits):
|
|
|
|
| 248 |
break
|
| 249 |
|
| 250 |
current_ids[pos] = new_token
|
|
|
|
| 251 |
total_replacements += 1
|
| 252 |
|
| 253 |
if progress_callback:
|
|
|
|
| 297 |
return response
|
| 298 |
|
| 299 |
class SpeedGenerator(ARDiffusionGenerator):
|
| 300 |
+
"""Speed-focused AR-Diffusion generator"""
|
| 301 |
|
| 302 |
def filter_logits(self, logits: torch.Tensor, top_k: int = 15, top_p: float = 0.8,
|
| 303 |
temperature: float = 1.0) -> torch.Tensor:
|
|
|
|
| 415 |
# Use mixed precision for speed on GPU
|
| 416 |
with torch.autocast(device_type='cuda', dtype=torch.float16, enabled=self.device.type == 'cuda'):
|
| 417 |
for step in range(steps):
|
|
|
|
|
|
|
| 418 |
if progress_callback:
|
| 419 |
progress = 0.2 + (step / steps) * 0.7
|
| 420 |
elapsed = time.time() - start_time
|
|
|
|
| 436 |
max_replace = min(8, len(mask_pos))
|
| 437 |
positions = sorted(mask_pos.tolist())[:max_replace]
|
| 438 |
|
|
|
|
| 439 |
for pos in positions:
|
| 440 |
if pos < len(logits):
|
| 441 |
token_logits = logits[pos].clone()
|
|
|
|
| 462 |
new_token = top_indices[1].item()
|
| 463 |
|
| 464 |
current_ids[pos] = new_token
|
|
|
|
| 465 |
total_replacements += 1
|
| 466 |
|
| 467 |
if progress_callback:
|
|
|
|
| 505 |
|
| 506 |
return response
|
| 507 |
|
| 508 |
+
@spaces.GPU
|
| 509 |
+
def load_model():
|
| 510 |
+
"""Load model with Zero GPU optimization using @spaces.GPU"""
|
| 511 |
+
global tokenizer, model, device
|
|
|
|
| 512 |
|
| 513 |
+
if tokenizer is not None and model is not None:
|
| 514 |
+
return tokenizer, model, device
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 515 |
|
| 516 |
+
try:
|
| 517 |
+
# This appears to be a LoRA adapter
|
| 518 |
+
adapter_path = "rootxhacker/llama-3B-diffusion-exp-fixed"
|
| 519 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 520 |
+
|
| 521 |
+
print(f"Loading AR-Diffusion model on {device}...")
|
| 522 |
+
|
| 523 |
+
# Load tokenizer from adapter
|
| 524 |
+
tokenizer = AutoTokenizer.from_pretrained(adapter_path, trust_remote_code=True)
|
| 525 |
+
if tokenizer.pad_token is None:
|
| 526 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 527 |
+
|
| 528 |
+
# Load the adapter model
|
| 529 |
+
print("Loading adapter model...")
|
| 530 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 531 |
+
adapter_path,
|
| 532 |
+
torch_dtype=torch.float16 if device.type == "cuda" else torch.float32,
|
| 533 |
+
device_map="auto" if device.type == "cuda" else None,
|
| 534 |
+
trust_remote_code=True,
|
| 535 |
+
low_cpu_mem_usage=True
|
| 536 |
+
)
|
| 537 |
+
|
| 538 |
+
print("β
AR-Diffusion model loaded successfully!")
|
| 539 |
+
return tokenizer, model, device
|
| 540 |
+
|
| 541 |
+
except Exception as e:
|
| 542 |
+
print(f"β Error loading {adapter_path}: {e}")
|
| 543 |
+
|
| 544 |
+
# Fallback to a working model for demonstration
|
| 545 |
+
print("π Falling back to demonstration model...")
|
| 546 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 547 |
+
fallback_model = "gpt2-medium"
|
| 548 |
+
|
| 549 |
+
tokenizer = AutoTokenizer.from_pretrained(fallback_model)
|
| 550 |
+
if tokenizer.pad_token is None:
|
| 551 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 552 |
+
|
| 553 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 554 |
+
fallback_model,
|
| 555 |
+
torch_dtype=torch.float16 if device.type == "cuda" else torch.float32,
|
| 556 |
+
device_map="auto" if device.type == "cuda" else None,
|
| 557 |
+
low_cpu_mem_usage=True
|
| 558 |
+
)
|
| 559 |
+
|
| 560 |
+
print(f"β
Fallback model {fallback_model} loaded successfully!")
|
| 561 |
+
print("β οΈ Note: Using fallback model - AR-Diffusion features may not work as expected")
|
| 562 |
+
return tokenizer, model, device
|
| 563 |
|
| 564 |
def cleanup_memory():
|
| 565 |
"""Clean up GPU memory"""
|
|
|
|
| 589 |
# Generate response with progress callback
|
| 590 |
def progress_callback(pct, status_msg):
|
| 591 |
progress(pct)
|
|
|
|
| 592 |
|
| 593 |
response, stats = generator.generate(message, progress_callback)
|
| 594 |
|
|
|
|
| 736 |
show_error=True
|
| 737 |
)
|
| 738 |
|
| 739 |
+
# Requirements.txt should include:
|
| 740 |
# torch>=2.0.0
|
| 741 |
# transformers>=4.30.0
|
| 742 |
# gradio
|
| 743 |
# numpy
|
| 744 |
# accelerate
|
| 745 |
# spaces
|
| 746 |
+
# peft
|