Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import spaces | |
| from sentence_transformers import SentenceTransformer | |
| from sentence_transformers.util import cos_sim | |
| from sentence_transformers.quantization import quantize_embeddings | |
| print("Loading embedding model"); | |
| dimensions = 768 | |
| model = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1", truncate_dim=dimensions) | |
| def embed(text): | |
| query_embedding = model.encode(text, prompt_name="query") | |
| return query_embedding.tolist(); | |
| with gr.Blocks() as demo: | |
| txtEmbed = gr.Text(label="Text to embed") | |
| btnEmbed = gr.Button("embed"); | |
| search = gr.Text(label="Script to search") | |
| results = gr.Text(label="results"); | |
| btnEmbed.click(embed, [txtEmbed], [results]) | |
| if __name__ == "__main__": | |
| demo.launch( | |
| share=False, | |
| debug=False, | |
| server_port=7860, | |
| server_name="0.0.0.0", | |
| allowed_paths=[] | |
| ) | |