Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| import torch.nn.functional as F | |
| from transformers import AutoTokenizer, AutoModel, AutoImageProcessor | |
| import gradio as gr | |
| processor = AutoImageProcessor.from_pretrained("nomic-ai/nomic-embed-vision-v1.5") | |
| vision_model = AutoModel.from_pretrained("nomic-ai/nomic-embed-vision-v1.5", trust_remote_code=True) | |
| def ImgEmbed(image): | |
| print(image); | |
| inputs = processor(image, return_tensors="pt") | |
| img_emb = vision_model(**inputs).last_hidden_state | |
| img_embeddings = F.normalize(img_emb[:, 0], p=2, dim=1) | |
| return img_embeddings[0].tolist(); | |
| with gr.Blocks() as demo: | |
| img = gr.Image(); | |
| out = gr.Text(); | |
| btn = gr.Button("Get Embeddings") | |
| btn.click(ImgEmbed, [img], [out]) | |
| if __name__ == "__main__": | |
| demo.launch(show_api=True) |