Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,14 +3,14 @@ import torch.nn.functional as F
|
|
| 3 |
from transformers import AutoTokenizer, AutoModel, AutoImageProcessor
|
| 4 |
import gradio as gr
|
| 5 |
import spaces
|
|
|
|
| 6 |
|
| 7 |
# neuralmind/bert-base-portuguese-cased
|
| 8 |
-
ModelName = "
|
| 9 |
model = AutoModel.from_pretrained(ModelName)
|
| 10 |
tokenizer = AutoTokenizer.from_pretrained(ModelName, do_lower_case=False)
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
# vision_model = AutoModel.from_pretrained("nomic-ai/nomic-embed-vision-v1.5", trust_remote_code=True)
|
| 14 |
|
| 15 |
# tokenizer = AutoTokenizer.from_pretrained('nomic-ai/nomic-embed-text-v1.5')
|
| 16 |
# text_model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1.5', trust_remote_code=True)
|
|
@@ -23,7 +23,7 @@ def mean_pooling(model_output, attention_mask):
|
|
| 23 |
|
| 24 |
@spaces.GPU
|
| 25 |
def TxtEmbed(text):
|
| 26 |
-
|
| 27 |
|
| 28 |
|
| 29 |
input_ids = tokenizer.encode(text, return_tensors='pt')
|
|
@@ -31,20 +31,20 @@ def TxtEmbed(text):
|
|
| 31 |
with torch.no_grad():
|
| 32 |
outs = model(input_ids)
|
| 33 |
encoded = outs[0][0, 1:-1] # Ignore [CLS] and [SEP] special tokens
|
| 34 |
-
|
| 35 |
|
| 36 |
|
| 37 |
-
#
|
| 38 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
#
|
| 40 |
-
#
|
| 41 |
-
# model_output = text_model(**encoded_input)
|
| 42 |
-
#
|
| 43 |
-
# text_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
| 44 |
-
# text_embeddings = F.layer_norm(text_embeddings, normalized_shape=(text_embeddings.shape[1],))
|
| 45 |
-
# text_embeddings = F.normalize(text_embeddings, p=2, dim=1)
|
| 46 |
-
|
| 47 |
-
return (encoded.tolist())[0];
|
| 48 |
|
| 49 |
|
| 50 |
|
|
|
|
| 3 |
from transformers import AutoTokenizer, AutoModel, AutoImageProcessor
|
| 4 |
import gradio as gr
|
| 5 |
import spaces
|
| 6 |
+
import torch
|
| 7 |
|
| 8 |
# neuralmind/bert-base-portuguese-cased
|
| 9 |
+
ModelName = "neuralmind/bert-base-portuguese-cased"
|
| 10 |
model = AutoModel.from_pretrained(ModelName)
|
| 11 |
tokenizer = AutoTokenizer.from_pretrained(ModelName, do_lower_case=False)
|
| 12 |
+
processor = AutoImageProcessor.from_pretrained("nomic-ai/nomic-embed-vision-v1.5")
|
| 13 |
+
vision_model = AutoModel.from_pretrained("nomic-ai/nomic-embed-vision-v1.5", trust_remote_code=True)
|
|
|
|
| 14 |
|
| 15 |
# tokenizer = AutoTokenizer.from_pretrained('nomic-ai/nomic-embed-text-v1.5')
|
| 16 |
# text_model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1.5', trust_remote_code=True)
|
|
|
|
| 23 |
|
| 24 |
@spaces.GPU
|
| 25 |
def TxtEmbed(text):
|
| 26 |
+
|
| 27 |
|
| 28 |
|
| 29 |
input_ids = tokenizer.encode(text, return_tensors='pt')
|
|
|
|
| 31 |
with torch.no_grad():
|
| 32 |
outs = model(input_ids)
|
| 33 |
encoded = outs[0][0, 1:-1] # Ignore [CLS] and [SEP] special tokens
|
| 34 |
+
return (encoded.tolist())[0];
|
| 35 |
|
| 36 |
|
| 37 |
+
#sentences = [text]
|
| 38 |
+
#encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
| 39 |
+
#
|
| 40 |
+
#with torch.no_grad():
|
| 41 |
+
# model_output = text_model(**encoded_input)
|
| 42 |
+
#
|
| 43 |
+
#text_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
| 44 |
+
#text_embeddings = F.layer_norm(text_embeddings, normalized_shape=(text_embeddings.shape[1],))
|
| 45 |
+
#text_embeddings = F.normalize(text_embeddings, p=2, dim=1)
|
| 46 |
#
|
| 47 |
+
# return (text_embeddings.tolist)[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
|
| 50 |
|