Update training code
Browse files- app.py +1 -1
- train_abuse_model.py +12 -2
app.py
CHANGED
|
@@ -4,7 +4,7 @@ import subprocess
|
|
| 4 |
def run_training():
|
| 5 |
try:
|
| 6 |
# Run train.py using subprocess and capture output
|
| 7 |
-
result = subprocess.run(["python", "
|
| 8 |
# Return stdout if success, otherwise stderr
|
| 9 |
return result.stdout if result.returncode == 0 else f"Error:\n{result.stderr}"
|
| 10 |
except Exception as e:
|
|
|
|
| 4 |
def run_training():
|
| 5 |
try:
|
| 6 |
# Run train.py using subprocess and capture output
|
| 7 |
+
result = subprocess.run(["python", "train_abuse_model.py"], capture_output=True, text=True)
|
| 8 |
# Return stdout if success, otherwise stderr
|
| 9 |
return result.stdout if result.returncode == 0 else f"Error:\n{result.stderr}"
|
| 10 |
except Exception as e:
|
train_abuse_model.py
CHANGED
|
@@ -11,6 +11,9 @@ from sklearn.metrics import classification_report, precision_recall_fscore_suppo
|
|
| 11 |
|
| 12 |
from torch.utils.data import Dataset
|
| 13 |
|
|
|
|
|
|
|
|
|
|
| 14 |
# Hugging Face transformers
|
| 15 |
from transformers import (
|
| 16 |
AutoTokenizer,
|
|
@@ -22,6 +25,7 @@ from transformers import (
|
|
| 22 |
TrainingArguments
|
| 23 |
)
|
| 24 |
|
|
|
|
| 25 |
# Check for GPU availability
|
| 26 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 27 |
|
|
@@ -125,8 +129,14 @@ def evaluate_model_with_thresholds(trainer, test_dataset):
|
|
| 125 |
"pred_labels": final_pred_str
|
| 126 |
}
|
| 127 |
|
| 128 |
-
|
| 129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
# Define text and label columns
|
| 132 |
text_column = "post_body"
|
|
|
|
| 11 |
|
| 12 |
from torch.utils.data import Dataset
|
| 13 |
|
| 14 |
+
# Hugging Face Hub
|
| 15 |
+
from huggingface_hub import hf_hub_download
|
| 16 |
+
|
| 17 |
# Hugging Face transformers
|
| 18 |
from transformers import (
|
| 19 |
AutoTokenizer,
|
|
|
|
| 25 |
TrainingArguments
|
| 26 |
)
|
| 27 |
|
| 28 |
+
|
| 29 |
# Check for GPU availability
|
| 30 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 31 |
|
|
|
|
| 129 |
"pred_labels": final_pred_str
|
| 130 |
}
|
| 131 |
|
| 132 |
+
|
| 133 |
+
# Load dataset from Hugging Face Hub
|
| 134 |
+
path = hf_hub_download(
|
| 135 |
+
repo_id="rshakked/abusive-relashionship-stories",
|
| 136 |
+
filename="Abusive Relationship Stories - Technion & MSF.xlsx",
|
| 137 |
+
repo_type="dataset"
|
| 138 |
+
)
|
| 139 |
+
df = pd.read_excel(path)
|
| 140 |
|
| 141 |
# Define text and label columns
|
| 142 |
text_column = "post_body"
|