Spaces:
Running
on
Zero
Running
on
Zero
Update src/app.py
Browse files- src/app.py +189 -150
src/app.py
CHANGED
|
@@ -1,29 +1,51 @@
|
|
| 1 |
"""Developed by Ruslan Magana Vsevolodovna"""
|
|
|
|
| 2 |
from collections.abc import Iterator
|
| 3 |
from datetime import datetime
|
| 4 |
from pathlib import Path
|
| 5 |
from threading import Thread
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
import gradio as gr
|
| 7 |
import spaces
|
| 8 |
import torch
|
| 9 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 10 |
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
|
| 11 |
-
|
| 12 |
from themes.research_monochrome import theme
|
| 13 |
|
| 14 |
# =============================================================================
|
| 15 |
# Constants & Prompts
|
| 16 |
# =============================================================================
|
| 17 |
-
today_date = datetime.today().strftime("%B %-d, %Y")
|
| 18 |
-
SYS_PROMPT =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
TITLE = "IBM Granite 3.1 8b Reasoning & Vision Preview"
|
| 20 |
-
DESCRIPTION = """
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
MAX_INPUT_TOKEN_LENGTH = 128_000
|
| 22 |
MAX_NEW_TOKENS = 1024
|
| 23 |
-
TEMPERATURE = 0.
|
| 24 |
TOP_P = 0.85
|
| 25 |
TOP_K = 50
|
| 26 |
REPETITION_PENALTY = 1.05
|
|
|
|
| 27 |
# Vision defaults (advanced settings)
|
| 28 |
VISION_TEMPERATURE = 0.2
|
| 29 |
VISION_TOP_P = 0.95
|
|
@@ -32,13 +54,13 @@ VISION_MAX_TOKENS = 128
|
|
| 32 |
|
| 33 |
if not torch.cuda.is_available():
|
| 34 |
print("This demo may not work on CPU.")
|
|
|
|
| 35 |
# =============================================================================
|
| 36 |
# Text Model Loading
|
| 37 |
# =============================================================================
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
granite_text_model="ruslanmv/granite-3.1-8b-Reasoning"
|
| 42 |
text_model = AutoModelForCausalLM.from_pretrained(
|
| 43 |
granite_text_model,
|
| 44 |
torch_dtype=torch.float16,
|
|
@@ -46,6 +68,7 @@ text_model = AutoModelForCausalLM.from_pretrained(
|
|
| 46 |
)
|
| 47 |
tokenizer = AutoTokenizer.from_pretrained(granite_text_model)
|
| 48 |
tokenizer.use_default_system_prompt = False
|
|
|
|
| 49 |
# =============================================================================
|
| 50 |
# Vision Model Loading
|
| 51 |
# =============================================================================
|
|
@@ -55,8 +78,63 @@ vision_model = LlavaNextForConditionalGeneration.from_pretrained(
|
|
| 55 |
vision_model_path,
|
| 56 |
torch_dtype=torch.float16,
|
| 57 |
device_map="auto",
|
| 58 |
-
trust_remote_code=True # Ensure the custom code is used so that weight shapes match.
|
| 59 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
# =============================================================================
|
| 61 |
# Text Generation Function (for text-only chat)
|
| 62 |
# =============================================================================
|
|
@@ -70,7 +148,10 @@ def generate(
|
|
| 70 |
top_k: float = TOP_K,
|
| 71 |
max_new_tokens: int = MAX_NEW_TOKENS,
|
| 72 |
) -> Iterator[str]:
|
| 73 |
-
"""
|
|
|
|
|
|
|
|
|
|
| 74 |
conversation = []
|
| 75 |
conversation.append({"role": "system", "content": SYS_PROMPT})
|
| 76 |
conversation.extend(chat_history)
|
|
@@ -84,17 +165,17 @@ def generate(
|
|
| 84 |
)
|
| 85 |
input_ids = input_ids.to(text_model.device)
|
| 86 |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 87 |
-
generate_kwargs =
|
| 88 |
-
|
| 89 |
-
streamer
|
| 90 |
-
max_new_tokens
|
| 91 |
-
do_sample
|
| 92 |
-
top_p
|
| 93 |
-
top_k
|
| 94 |
-
temperature
|
| 95 |
-
num_beams
|
| 96 |
-
repetition_penalty
|
| 97 |
-
|
| 98 |
t = Thread(target=text_model.generate, kwargs=generate_kwargs)
|
| 99 |
t.start()
|
| 100 |
|
|
@@ -112,43 +193,36 @@ def generate(
|
|
| 112 |
reasoning_started = True
|
| 113 |
reasoning_start_index = current_output.find("<reasoning>") + len("<reasoning>")
|
| 114 |
collected_reasoning = current_output[reasoning_start_index:]
|
| 115 |
-
yield "[Reasoning]: "
|
| 116 |
-
outputs = [collected_reasoning]
|
| 117 |
|
| 118 |
elif reasoning_started and "<answer>" in current_output and not answer_started:
|
| 119 |
answer_started = True
|
| 120 |
reasoning_end_index = current_output.find("<answer>")
|
| 121 |
-
collected_reasoning = current_output[len("<reasoning>"):reasoning_end_index]
|
| 122 |
|
| 123 |
answer_start_index = current_output.find("<answer>") + len("<answer>")
|
| 124 |
collected_answer = current_output[answer_start_index:]
|
| 125 |
-
yield "\n[Answer]: "
|
| 126 |
-
outputs = [collected_answer]
|
| 127 |
-
yield collected_answer
|
| 128 |
|
| 129 |
elif reasoning_started and not answer_started:
|
| 130 |
-
|
| 131 |
-
|
| 132 |
|
| 133 |
elif answer_started:
|
| 134 |
-
collected_answer += text
|
| 135 |
-
yield text
|
| 136 |
-
|
| 137 |
-
|
| 138 |
|
|
|
|
|
|
|
| 139 |
|
| 140 |
# =============================================================================
|
| 141 |
# Vision Chat Inference Function (for image+text chat)
|
| 142 |
# =============================================================================
|
| 143 |
-
def get_text_from_content(content):
|
| 144 |
-
texts = []
|
| 145 |
-
for item in content:
|
| 146 |
-
if item["type"] == "text":
|
| 147 |
-
texts.append(item["text"])
|
| 148 |
-
elif item["type"] == "image":
|
| 149 |
-
texts.append("<Image>")
|
| 150 |
-
return " ".join(texts)
|
| 151 |
-
|
| 152 |
@spaces.GPU
|
| 153 |
def chat_inference(image, text, conversation, temperature=VISION_TEMPERATURE, top_p=VISION_TOP_P, top_k=VISION_TOP_K, max_tokens=VISION_MAX_TOKENS):
|
| 154 |
if conversation is None:
|
|
@@ -159,7 +233,7 @@ def chat_inference(image, text, conversation, temperature=VISION_TEMPERATURE, to
|
|
| 159 |
if text and text.strip():
|
| 160 |
user_content.append({"type": "text", "text": text.strip()})
|
| 161 |
if not user_content:
|
| 162 |
-
return
|
| 163 |
conversation.append({"role": "user", "content": user_content})
|
| 164 |
inputs = vision_processor.apply_chat_template(
|
| 165 |
conversation,
|
|
@@ -179,131 +253,89 @@ def chat_inference(image, text, conversation, temperature=VISION_TEMPERATURE, to
|
|
| 179 |
output = vision_model.generate(**inputs, **generation_kwargs)
|
| 180 |
assistant_response = vision_processor.decode(output[0], skip_special_tokens=True)
|
| 181 |
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
if vision_reasoning:
|
| 186 |
-
reasoning = ""
|
| 187 |
-
answer = ""
|
| 188 |
-
if "<reasoning>" in assistant_response and "<answer>" in assistant_response:
|
| 189 |
-
reasoning_start = assistant_response.find("<reasoning>") + len("<reasoning>")
|
| 190 |
-
reasoning_end = assistant_response.find("</reasoning>")
|
| 191 |
-
reasoning = assistant_response[reasoning_start:reasoning_end].strip()
|
| 192 |
-
|
| 193 |
-
answer_start = assistant_response.find("<answer>") + len("<answer>")
|
| 194 |
-
answer_end = assistant_response.find("</answer>")
|
| 195 |
-
|
| 196 |
-
if answer_end != -1: # Handle cases where answer end tag is present
|
| 197 |
-
answer = assistant_response[answer_start:answer_end].strip()
|
| 198 |
-
else: # Fallback if answer end tag is missing (less robust)
|
| 199 |
-
answer = assistant_response[answer_start:].strip()
|
| 200 |
-
formatted_response_content = []
|
| 201 |
-
if reasoning:
|
| 202 |
-
formatted_response_content.append({"type": "text", "text": f"[Reasoning]: {reasoning}"})
|
| 203 |
-
formatted_response_content.append({"type": "text", "text": f"[Answer]: {answer}"})
|
| 204 |
-
conversation.append({"role": "assistant", "content": formatted_response_content})
|
| 205 |
else:
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
return display_vision_conversation(conversation), conversation
|
| 209 |
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
# =============================================================================
|
| 213 |
-
def display_text_conversation(conversation):
|
| 214 |
-
"""Convert a text conversation (list of dicts) into a list of (user, assistant) tuples."""
|
| 215 |
-
chat_history = []
|
| 216 |
-
i = 0
|
| 217 |
-
while i < len(conversation):
|
| 218 |
-
if conversation[i]["role"] == "user":
|
| 219 |
-
user_msg = conversation[i]["content"]
|
| 220 |
-
assistant_msg = ""
|
| 221 |
-
if i + 1 < len(conversation) and conversation[i+1]["role"] == "assistant":
|
| 222 |
-
assistant_msg = conversation[i+1]["content"]
|
| 223 |
-
i += 2
|
| 224 |
-
else:
|
| 225 |
-
i += 1
|
| 226 |
-
chat_history.append((user_msg, assistant_msg))
|
| 227 |
-
else:
|
| 228 |
-
i += 1
|
| 229 |
-
return chat_history
|
| 230 |
|
| 231 |
-
def display_vision_conversation(conversation):
|
| 232 |
-
"""Convert a vision conversation (with mixed content types) into a list of (user, assistant) tuples."""
|
| 233 |
-
chat_history = []
|
| 234 |
-
i = 0
|
| 235 |
-
while i < len(conversation):
|
| 236 |
-
if conversation[i]["role"] == "user":
|
| 237 |
-
user_msg = get_text_from_content(conversation[i]["content"])
|
| 238 |
-
assistant_msg = ""
|
| 239 |
-
if i + 1 < len(conversation) and conversation[i+1]["role"] == "assistant":
|
| 240 |
-
# Extract assistant text; remove any special tokens if present.
|
| 241 |
-
assistant_content = conversation[i+1]["content"]
|
| 242 |
-
assistant_text_parts = []
|
| 243 |
-
for item in assistant_content:
|
| 244 |
-
if item["type"] == "text":
|
| 245 |
-
assistant_text_parts.append(item["text"])
|
| 246 |
-
assistant_msg = "\n".join(assistant_text_parts).strip()
|
| 247 |
-
i += 2
|
| 248 |
-
else:
|
| 249 |
-
i += 1
|
| 250 |
-
chat_history.append((user_msg, assistant_msg))
|
| 251 |
-
else:
|
| 252 |
-
i += 1
|
| 253 |
-
return chat_history
|
| 254 |
# =============================================================================
|
| 255 |
# Unified Send-Message Function
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 256 |
# =============================================================================
|
| 257 |
def send_message(image, text,
|
| 258 |
text_temperature, text_repetition_penalty, text_top_p, text_top_k, text_max_new_tokens,
|
| 259 |
vision_temperature, vision_top_p, vision_top_k, vision_max_tokens,
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
|
|
|
|
|
|
| 265 |
if image is not None:
|
| 266 |
-
#
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 278 |
else:
|
| 279 |
-
# Text
|
| 280 |
-
|
| 281 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 282 |
for chunk in generate(
|
| 283 |
-
text,
|
| 284 |
temperature=text_temperature,
|
| 285 |
repetition_penalty=text_repetition_penalty,
|
| 286 |
top_p=text_top_p,
|
| 287 |
top_k=text_top_k,
|
| 288 |
max_new_tokens=text_max_new_tokens
|
| 289 |
):
|
| 290 |
-
|
|
|
|
|
|
|
|
|
|
| 291 |
|
| 292 |
-
|
| 293 |
-
conv.append({"role": "assistant", "content": output_text}) # Store full output with tags
|
| 294 |
-
text_state = conv
|
| 295 |
-
chat_history = display_text_conversation(text_state) # Display function handles tag parsing now.
|
| 296 |
-
return chat_history, text_state, vision_state
|
| 297 |
|
|
|
|
|
|
|
|
|
|
| 298 |
def clear_chat():
|
| 299 |
-
# Clear
|
| 300 |
-
return [], [], [],
|
|
|
|
| 301 |
# =============================================================================
|
| 302 |
# UI Layout with Gradio
|
| 303 |
# =============================================================================
|
| 304 |
css_file_path = Path(Path(__file__).parent / "app.css")
|
| 305 |
head_file_path = Path(Path(__file__).parent / "app_head.html")
|
| 306 |
-
|
|
|
|
| 307 |
gr.HTML(f"<h1>{TITLE}</h1>", elem_classes=["gr_title"])
|
| 308 |
gr.HTML(DESCRIPTION)
|
| 309 |
|
|
@@ -325,12 +357,17 @@ with gr.Blocks(fill_height=True, css_paths=css_file_path, head_paths=head_file_p
|
|
| 325 |
vision_top_p_slider = gr.Slider(minimum=0.0, maximum=1.0, value=VISION_TOP_P, step=0.01, label="Vision Top p", elem_classes=["gr_accordion_element"])
|
| 326 |
vision_top_k_slider = gr.Slider(minimum=0, maximum=100, value=VISION_TOP_K, step=1, label="Vision Top k", elem_classes=["gr_accordion_element"])
|
| 327 |
vision_max_tokens_slider = gr.Slider(minimum=10, maximum=300, value=VISION_MAX_TOKENS, step=1, label="Vision Max Tokens", elem_classes=["gr_accordion_element"])
|
| 328 |
-
|
|
|
|
| 329 |
clear_button = gr.Button("Clear Chat")
|
| 330 |
|
| 331 |
-
# Conversation state variables
|
| 332 |
-
|
|
|
|
|
|
|
|
|
|
| 333 |
vision_state = gr.State([])
|
|
|
|
| 334 |
|
| 335 |
send_button.click(
|
| 336 |
send_message,
|
|
@@ -338,20 +375,21 @@ with gr.Blocks(fill_height=True, css_paths=css_file_path, head_paths=head_file_p
|
|
| 338 |
image_input, text_input,
|
| 339 |
text_temperature_slider, repetition_penalty_slider, top_p_slider, top_k_slider, max_new_tokens_slider,
|
| 340 |
vision_temperature_slider, vision_top_p_slider, vision_top_k_slider, vision_max_tokens_slider,
|
| 341 |
-
|
| 342 |
],
|
| 343 |
-
outputs=[chatbot,
|
| 344 |
)
|
| 345 |
|
| 346 |
clear_button.click(
|
| 347 |
clear_chat,
|
| 348 |
inputs=None,
|
| 349 |
-
outputs=[chatbot,
|
| 350 |
)
|
| 351 |
|
| 352 |
gr.Examples(
|
| 353 |
examples=[
|
| 354 |
["https://raw.githubusercontent.com/gradio-app/gradio/main/test/test_files/cheetah1.jpg", "What is in this image?"],
|
|
|
|
| 355 |
[None, "Explain quantum computing to a beginner."],
|
| 356 |
[None, "What is OpenShift?"],
|
| 357 |
[None, "Importance of low latency inference"],
|
|
@@ -362,6 +400,7 @@ with gr.Blocks(fill_height=True, css_paths=css_file_path, head_paths=head_file_p
|
|
| 362 |
inputs=[image_input, text_input],
|
| 363 |
example_labels=[
|
| 364 |
"Vision Example: What is in this image?",
|
|
|
|
| 365 |
"Explain quantum computing",
|
| 366 |
"What is OpenShift?",
|
| 367 |
"Importance of low latency inference",
|
|
@@ -373,4 +412,4 @@ with gr.Blocks(fill_height=True, css_paths=css_file_path, head_paths=head_file_p
|
|
| 373 |
)
|
| 374 |
|
| 375 |
if __name__ == "__main__":
|
| 376 |
-
demo.queue().launch()
|
|
|
|
| 1 |
"""Developed by Ruslan Magana Vsevolodovna"""
|
| 2 |
+
|
| 3 |
from collections.abc import Iterator
|
| 4 |
from datetime import datetime
|
| 5 |
from pathlib import Path
|
| 6 |
from threading import Thread
|
| 7 |
+
import io
|
| 8 |
+
import base64
|
| 9 |
+
import random
|
| 10 |
+
|
| 11 |
import gradio as gr
|
| 12 |
import spaces
|
| 13 |
import torch
|
| 14 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 15 |
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
|
| 16 |
+
|
| 17 |
from themes.research_monochrome import theme
|
| 18 |
|
| 19 |
# =============================================================================
|
| 20 |
# Constants & Prompts
|
| 21 |
# =============================================================================
|
| 22 |
+
today_date = datetime.today().strftime("%B %-d, %Y")
|
| 23 |
+
SYS_PROMPT = """
|
| 24 |
+
Respond in the following format:
|
| 25 |
+
<reasoning>
|
| 26 |
+
...
|
| 27 |
+
</reasoning>
|
| 28 |
+
<answer>
|
| 29 |
+
...
|
| 30 |
+
</answer>
|
| 31 |
+
"""
|
| 32 |
+
|
| 33 |
TITLE = "IBM Granite 3.1 8b Reasoning & Vision Preview"
|
| 34 |
+
DESCRIPTION = """
|
| 35 |
+
<p>Granite 3.1 8b Reasoning is an open‐source LLM supporting a 128k context window and Granite Vision 3.1 2B Preview for vision‐language capabilities. Start with one of the sample prompts
|
| 36 |
+
or enter your own. Keep in mind that AI can occasionally make mistakes.
|
| 37 |
+
<span class="gr_docs_link">
|
| 38 |
+
<a href="https://www.ibm.com/granite/docs/">View Documentation <i class="fa fa-external-link"></i></a>
|
| 39 |
+
</span>
|
| 40 |
+
</p>
|
| 41 |
+
"""
|
| 42 |
MAX_INPUT_TOKEN_LENGTH = 128_000
|
| 43 |
MAX_NEW_TOKENS = 1024
|
| 44 |
+
TEMPERATURE = 0.5
|
| 45 |
TOP_P = 0.85
|
| 46 |
TOP_K = 50
|
| 47 |
REPETITION_PENALTY = 1.05
|
| 48 |
+
|
| 49 |
# Vision defaults (advanced settings)
|
| 50 |
VISION_TEMPERATURE = 0.2
|
| 51 |
VISION_TOP_P = 0.95
|
|
|
|
| 54 |
|
| 55 |
if not torch.cuda.is_available():
|
| 56 |
print("This demo may not work on CPU.")
|
| 57 |
+
|
| 58 |
# =============================================================================
|
| 59 |
# Text Model Loading
|
| 60 |
# =============================================================================
|
| 61 |
+
|
| 62 |
+
granite_text_model = "ruslanmv/granite-3.1-8b-Reasoning"
|
| 63 |
+
|
|
|
|
| 64 |
text_model = AutoModelForCausalLM.from_pretrained(
|
| 65 |
granite_text_model,
|
| 66 |
torch_dtype=torch.float16,
|
|
|
|
| 68 |
)
|
| 69 |
tokenizer = AutoTokenizer.from_pretrained(granite_text_model)
|
| 70 |
tokenizer.use_default_system_prompt = False
|
| 71 |
+
|
| 72 |
# =============================================================================
|
| 73 |
# Vision Model Loading
|
| 74 |
# =============================================================================
|
|
|
|
| 78 |
vision_model_path,
|
| 79 |
torch_dtype=torch.float16,
|
| 80 |
device_map="auto",
|
| 81 |
+
trust_remote_code=True # Ensure the custom code is used so that weight shapes match.
|
| 82 |
)
|
| 83 |
+
|
| 84 |
+
# =============================================================================
|
| 85 |
+
# Unified Display Function
|
| 86 |
+
# =============================================================================
|
| 87 |
+
def get_text_from_content(content):
|
| 88 |
+
"""Helper to extract text from a list of content items."""
|
| 89 |
+
texts = []
|
| 90 |
+
for item in content:
|
| 91 |
+
if isinstance(item, dict):
|
| 92 |
+
if item.get("type") == "text":
|
| 93 |
+
texts.append(item.get("text", ""))
|
| 94 |
+
elif item.get("type") == "image":
|
| 95 |
+
image = item.get("image")
|
| 96 |
+
if image is not None:
|
| 97 |
+
buffered = io.BytesIO()
|
| 98 |
+
image.save(buffered, format="JPEG")
|
| 99 |
+
img_str = base64.b64encode(buffered.getvalue()).decode()
|
| 100 |
+
texts.append(f'<img src="data:image/jpeg;base64,{img_str}" style="max-width: 200px; max-height: 200px;">')
|
| 101 |
+
else:
|
| 102 |
+
texts.append("<image>")
|
| 103 |
+
else:
|
| 104 |
+
texts.append(str(item))
|
| 105 |
+
return " ".join(texts)
|
| 106 |
+
|
| 107 |
+
def display_unified_conversation(conversation):
|
| 108 |
+
"""
|
| 109 |
+
Combine both text-only and vision messages.
|
| 110 |
+
Each conversation entry is expected to be a dict with keys:
|
| 111 |
+
- role: "user" or "assistant"
|
| 112 |
+
- content: either a string (for text) or a list of content items (for vision)
|
| 113 |
+
"""
|
| 114 |
+
chat_history = []
|
| 115 |
+
i = 0
|
| 116 |
+
while i < len(conversation):
|
| 117 |
+
if conversation[i]["role"] == "user":
|
| 118 |
+
user_content = conversation[i]["content"]
|
| 119 |
+
if isinstance(user_content, list):
|
| 120 |
+
user_msg = get_text_from_content(user_content)
|
| 121 |
+
else:
|
| 122 |
+
user_msg = user_content
|
| 123 |
+
assistant_msg = ""
|
| 124 |
+
if i + 1 < len(conversation) and conversation[i+1]["role"] == "assistant":
|
| 125 |
+
asst_content = conversation[i+1]["content"]
|
| 126 |
+
if isinstance(asst_content, list):
|
| 127 |
+
assistant_msg = get_text_from_content(asst_content)
|
| 128 |
+
else:
|
| 129 |
+
assistant_msg = asst_content
|
| 130 |
+
i += 2
|
| 131 |
+
else:
|
| 132 |
+
i += 1
|
| 133 |
+
chat_history.append((user_msg, assistant_msg))
|
| 134 |
+
else:
|
| 135 |
+
i += 1
|
| 136 |
+
return chat_history
|
| 137 |
+
|
| 138 |
# =============================================================================
|
| 139 |
# Text Generation Function (for text-only chat)
|
| 140 |
# =============================================================================
|
|
|
|
| 148 |
top_k: float = TOP_K,
|
| 149 |
max_new_tokens: int = MAX_NEW_TOKENS,
|
| 150 |
) -> Iterator[str]:
|
| 151 |
+
"""
|
| 152 |
+
Generate function for text chat. It streams tokens and stops once the generated answer
|
| 153 |
+
contains the closing </answer> tag.
|
| 154 |
+
"""
|
| 155 |
conversation = []
|
| 156 |
conversation.append({"role": "system", "content": SYS_PROMPT})
|
| 157 |
conversation.extend(chat_history)
|
|
|
|
| 165 |
)
|
| 166 |
input_ids = input_ids.to(text_model.device)
|
| 167 |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 168 |
+
generate_kwargs = {
|
| 169 |
+
"input_ids": input_ids,
|
| 170 |
+
"streamer": streamer,
|
| 171 |
+
"max_new_tokens": max_new_tokens,
|
| 172 |
+
"do_sample": True,
|
| 173 |
+
"top_p": top_p,
|
| 174 |
+
"top_k": top_k,
|
| 175 |
+
"temperature": temperature,
|
| 176 |
+
"num_beams": 1,
|
| 177 |
+
"repetition_penalty": repetition_penalty,
|
| 178 |
+
}
|
| 179 |
t = Thread(target=text_model.generate, kwargs=generate_kwargs)
|
| 180 |
t.start()
|
| 181 |
|
|
|
|
| 193 |
reasoning_started = True
|
| 194 |
reasoning_start_index = current_output.find("<reasoning>") + len("<reasoning>")
|
| 195 |
collected_reasoning = current_output[reasoning_start_index:]
|
| 196 |
+
yield "[Reasoning]: "
|
| 197 |
+
outputs = [collected_reasoning]
|
| 198 |
|
| 199 |
elif reasoning_started and "<answer>" in current_output and not answer_started:
|
| 200 |
answer_started = True
|
| 201 |
reasoning_end_index = current_output.find("<answer>")
|
| 202 |
+
collected_reasoning = current_output[len("<reasoning>"):reasoning_end_index]
|
| 203 |
|
| 204 |
answer_start_index = current_output.find("<answer>") + len("<answer>")
|
| 205 |
collected_answer = current_output[answer_start_index:]
|
| 206 |
+
yield "\n[Answer]: "
|
| 207 |
+
outputs = [collected_answer]
|
| 208 |
+
yield collected_answer
|
| 209 |
|
| 210 |
elif reasoning_started and not answer_started:
|
| 211 |
+
collected_reasoning += text
|
| 212 |
+
yield text
|
| 213 |
|
| 214 |
elif answer_started:
|
| 215 |
+
collected_answer += text
|
| 216 |
+
yield text
|
| 217 |
+
if "</answer>" in collected_answer:
|
| 218 |
+
break
|
| 219 |
|
| 220 |
+
else:
|
| 221 |
+
yield text
|
| 222 |
|
| 223 |
# =============================================================================
|
| 224 |
# Vision Chat Inference Function (for image+text chat)
|
| 225 |
# =============================================================================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
@spaces.GPU
|
| 227 |
def chat_inference(image, text, conversation, temperature=VISION_TEMPERATURE, top_p=VISION_TOP_P, top_k=VISION_TOP_K, max_tokens=VISION_MAX_TOKENS):
|
| 228 |
if conversation is None:
|
|
|
|
| 233 |
if text and text.strip():
|
| 234 |
user_content.append({"type": "text", "text": text.strip()})
|
| 235 |
if not user_content:
|
| 236 |
+
return display_unified_conversation(conversation), conversation
|
| 237 |
conversation.append({"role": "user", "content": user_content})
|
| 238 |
inputs = vision_processor.apply_chat_template(
|
| 239 |
conversation,
|
|
|
|
| 253 |
output = vision_model.generate(**inputs, **generation_kwargs)
|
| 254 |
assistant_response = vision_processor.decode(output[0], skip_special_tokens=True)
|
| 255 |
|
| 256 |
+
if "<|assistant|>" in assistant_response:
|
| 257 |
+
assistant_response_parts = assistant_response.split("<|assistant|>")
|
| 258 |
+
assistant_response_text = assistant_response_parts[-1].strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 259 |
else:
|
| 260 |
+
assistant_response_text = assistant_response.strip()
|
|
|
|
|
|
|
| 261 |
|
| 262 |
+
conversation.append({"role": "assistant", "content": [{"type": "text", "text": assistant_response_text.strip()}]})
|
| 263 |
+
return display_unified_conversation(conversation), conversation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 264 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 265 |
# =============================================================================
|
| 266 |
# Unified Send-Message Function
|
| 267 |
+
#
|
| 268 |
+
# We now maintain two histories:
|
| 269 |
+
# - unified_state: complete conversation (for display)
|
| 270 |
+
# - internal_text_state: only text turns (for text generation)
|
| 271 |
+
# Vision turns update only unified_state.
|
| 272 |
# =============================================================================
|
| 273 |
def send_message(image, text,
|
| 274 |
text_temperature, text_repetition_penalty, text_top_p, text_top_k, text_max_new_tokens,
|
| 275 |
vision_temperature, vision_top_p, vision_top_k, vision_max_tokens,
|
| 276 |
+
unified_state, vision_state, internal_text_state):
|
| 277 |
+
# Initialize states if empty
|
| 278 |
+
if unified_state is None:
|
| 279 |
+
unified_state = []
|
| 280 |
+
if internal_text_state is None:
|
| 281 |
+
internal_text_state = []
|
| 282 |
+
|
| 283 |
if image is not None:
|
| 284 |
+
# Use vision inference.
|
| 285 |
+
user_msg = []
|
| 286 |
+
user_msg.append({"type": "image", "image": image})
|
| 287 |
+
if text and text.strip():
|
| 288 |
+
user_msg.append({"type": "text", "text": text.strip()})
|
| 289 |
+
unified_state.append({"role": "user", "content": user_msg})
|
| 290 |
+
chat_history, updated_vision_conv = chat_inference(image, text, vision_state,
|
| 291 |
+
temperature=vision_temperature,
|
| 292 |
+
top_p=vision_top_p,
|
| 293 |
+
top_k=vision_top_k,
|
| 294 |
+
max_tokens=vision_max_tokens)
|
| 295 |
+
vision_state = updated_vision_conv
|
| 296 |
+
if updated_vision_conv and updated_vision_conv[-1]["role"] == "assistant":
|
| 297 |
+
unified_state.append(updated_vision_conv[-1])
|
| 298 |
+
yield display_unified_conversation(unified_state), unified_state, vision_state, internal_text_state
|
| 299 |
+
|
| 300 |
else:
|
| 301 |
+
# Text-only mode: update both unified and internal text states.
|
| 302 |
+
unified_state.append({"role": "user", "content": text})
|
| 303 |
+
internal_text_state.append({"role": "user", "content": text})
|
| 304 |
+
unified_state.append({"role": "assistant", "content": ""})
|
| 305 |
+
internal_text_state.append({"role": "assistant", "content": ""})
|
| 306 |
+
yield display_unified_conversation(unified_state), unified_state, vision_state, internal_text_state
|
| 307 |
+
|
| 308 |
+
base_conv = internal_text_state[:-1]
|
| 309 |
+
assistant_text = ""
|
| 310 |
for chunk in generate(
|
| 311 |
+
text, base_conv,
|
| 312 |
temperature=text_temperature,
|
| 313 |
repetition_penalty=text_repetition_penalty,
|
| 314 |
top_p=text_top_p,
|
| 315 |
top_k=text_top_k,
|
| 316 |
max_new_tokens=text_max_new_tokens
|
| 317 |
):
|
| 318 |
+
assistant_text += chunk
|
| 319 |
+
unified_state[-1]["content"] = assistant_text
|
| 320 |
+
internal_text_state[-1]["content"] = assistant_text
|
| 321 |
+
yield display_unified_conversation(unified_state), unified_state, vision_state, internal_text_state
|
| 322 |
|
| 323 |
+
yield display_unified_conversation(unified_state), unified_state, vision_state, internal_text_state
|
|
|
|
|
|
|
|
|
|
|
|
|
| 324 |
|
| 325 |
+
# =============================================================================
|
| 326 |
+
# Clear Chat Function
|
| 327 |
+
# =============================================================================
|
| 328 |
def clear_chat():
|
| 329 |
+
# Clear unified conversation, vision state, and internal text state.
|
| 330 |
+
return [], [], [], "", None
|
| 331 |
+
|
| 332 |
# =============================================================================
|
| 333 |
# UI Layout with Gradio
|
| 334 |
# =============================================================================
|
| 335 |
css_file_path = Path(Path(__file__).parent / "app.css")
|
| 336 |
head_file_path = Path(Path(__file__).parent / "app_head.html")
|
| 337 |
+
|
| 338 |
+
with gr.Blocks(fill_height=True, css_paths=[str(css_file_path)], head_paths=[str(head_file_path)], theme=theme, title=TITLE) as demo:
|
| 339 |
gr.HTML(f"<h1>{TITLE}</h1>", elem_classes=["gr_title"])
|
| 340 |
gr.HTML(DESCRIPTION)
|
| 341 |
|
|
|
|
| 357 |
vision_top_p_slider = gr.Slider(minimum=0.0, maximum=1.0, value=VISION_TOP_P, step=0.01, label="Vision Top p", elem_classes=["gr_accordion_element"])
|
| 358 |
vision_top_k_slider = gr.Slider(minimum=0, maximum=100, value=VISION_TOP_K, step=1, label="Vision Top k", elem_classes=["gr_accordion_element"])
|
| 359 |
vision_max_tokens_slider = gr.Slider(minimum=10, maximum=300, value=VISION_MAX_TOKENS, step=1, label="Vision Max Tokens", elem_classes=["gr_accordion_element"])
|
| 360 |
+
|
| 361 |
+
send_button = gr.Button("Send Message")
|
| 362 |
clear_button = gr.Button("Clear Chat")
|
| 363 |
|
| 364 |
+
# Conversation state variables:
|
| 365 |
+
# - unified_state: complete conversation for display (text and vision)
|
| 366 |
+
# - vision_state: state for vision turns
|
| 367 |
+
# - internal_text_state: only text turns (for text-generation)
|
| 368 |
+
unified_state = gr.State([])
|
| 369 |
vision_state = gr.State([])
|
| 370 |
+
internal_text_state = gr.State([])
|
| 371 |
|
| 372 |
send_button.click(
|
| 373 |
send_message,
|
|
|
|
| 375 |
image_input, text_input,
|
| 376 |
text_temperature_slider, repetition_penalty_slider, top_p_slider, top_k_slider, max_new_tokens_slider,
|
| 377 |
vision_temperature_slider, vision_top_p_slider, vision_top_k_slider, vision_max_tokens_slider,
|
| 378 |
+
unified_state, vision_state, internal_text_state
|
| 379 |
],
|
| 380 |
+
outputs=[chatbot, unified_state, vision_state, internal_text_state],
|
| 381 |
)
|
| 382 |
|
| 383 |
clear_button.click(
|
| 384 |
clear_chat,
|
| 385 |
inputs=None,
|
| 386 |
+
outputs=[chatbot, unified_state, vision_state, internal_text_state, text_input, image_input]
|
| 387 |
)
|
| 388 |
|
| 389 |
gr.Examples(
|
| 390 |
examples=[
|
| 391 |
["https://raw.githubusercontent.com/gradio-app/gradio/main/test/test_files/cheetah1.jpg", "What is in this image?"],
|
| 392 |
+
[None, "Compute Pi."],
|
| 393 |
[None, "Explain quantum computing to a beginner."],
|
| 394 |
[None, "What is OpenShift?"],
|
| 395 |
[None, "Importance of low latency inference"],
|
|
|
|
| 400 |
inputs=[image_input, text_input],
|
| 401 |
example_labels=[
|
| 402 |
"Vision Example: What is in this image?",
|
| 403 |
+
"Compute Pi.",
|
| 404 |
"Explain quantum computing",
|
| 405 |
"What is OpenShift?",
|
| 406 |
"Importance of low latency inference",
|
|
|
|
| 412 |
)
|
| 413 |
|
| 414 |
if __name__ == "__main__":
|
| 415 |
+
demo.queue().launch(debug=True, share=False)
|