Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,209 Bytes
4e09337 92717ee a1cb500 4ebc629 4e09337 92717ee a1cb500 d2a27fd 4e09337 92717ee d2a27fd 4e09337 92717ee 4e09337 d2a27fd 92717ee a1cb500 4e09337 a1cb500 4e09337 a1cb500 4e09337 a1cb500 4e09337 a1cb500 4e09337 a1cb500 4e09337 4ebc629 4e09337 4ebc629 4e09337 4ebc629 a1cb500 4ebc629 4e09337 4ebc629 a1cb500 4ebc629 4e09337 4ebc629 4e09337 a1cb500 4ebc629 4e09337 4ebc629 a1cb500 4ebc629 4e09337 4ebc629 d2a27fd 4e09337 92717ee 4e09337 a1cb500 d2a27fd 4e09337 a1cb500 4e09337 92717ee a1cb500 4e09337 d2a27fd 4e09337 92717ee 4e09337 92717ee 4e09337 4ebc629 4e09337 4ebc629 a1cb500 4ebc629 a1cb500 92717ee 4e09337 92717ee 4e09337 d2a27fd 4e09337 92717ee 4e09337 92717ee d2a27fd 4e09337 92717ee 4e09337 d2a27fd 92717ee 4e09337 d2a27fd 92717ee d2a27fd 4e09337 d2a27fd 92717ee 4e09337 92717ee 4e09337 92717ee 4e09337 92717ee 4e09337 92717ee 4e09337 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
# ---- Flags ----
run_api = False
SSD_1B = False # True = use SSD-1B + LCM LoRA, False = SDXL Base + LCM (default)
# ---- Standard imports ----
import os
import subprocess
import numpy as np
# Optional: clear_output is nice in notebooks; ignore if not available
try:
from IPython.display import clear_output # noqa: F401
except Exception:
def clear_output(): # no-op outside notebooks
pass
# ---- Tame NVML noise in containers without GPU drivers (optional) ----
os.environ.setdefault("DEEPSPEED_DISABLE_NVML", "1")
import warnings
warnings.filterwarnings("ignore", message="Can't initialize NVML")
# ---- App imports (expect deps from requirements.txt already installed) ----
import torch
import gradio as gr
from PIL import Image
from diffusers import UNet2DConditionModel, DiffusionPipeline, LCMScheduler
# ---- Config / constants ----
current_dir = os.getcwd()
cache_path = os.path.join(current_dir, "cache")
os.makedirs(cache_path, exist_ok=True)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024"))
SECRET_TOKEN = os.getenv("SECRET_TOKEN", "default_secret")
# ---- GPU visibility / info (for logs only) ----
def print_nvidia_smi():
try:
proc = subprocess.run(["nvidia-smi"], capture_output=True, text=True)
if proc.returncode == 0 and proc.stdout.strip():
print(proc.stdout)
else:
# Show stderr when present to help debugging; not used for logic
if proc.stderr:
print(proc.stderr)
else:
print("nvidia-smi not available or returned no output.")
except FileNotFoundError:
print("nvidia-smi not found on PATH.")
print_nvidia_smi()
# ---- Device + dtype selection (robust) ----
is_gpu = torch.cuda.is_available()
print(f"CUDA available: {is_gpu}")
device = torch.device("cuda") if is_gpu else torch.device("cpu")
dtype = torch.float16 if is_gpu else torch.float32
# ---- Helpers to only pass 'variant' when needed (Diffusers <=0.23 friendly) ----
def _add_variant(kwargs: dict) -> dict:
"""Only include 'variant' when running on GPU."""
if is_gpu:
kwargs = dict(kwargs) # shallow copy
kwargs["variant"] = "fp16"
return kwargs
# ---- Pipeline setup ----
if not SSD_1B:
# SDXL base + LCM UNet
unet = UNet2DConditionModel.from_pretrained(
"latent-consistency/lcm-sdxl",
torch_dtype=dtype,
cache_dir=cache_path,
**_add_variant({})
)
pipe = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
unet=unet,
torch_dtype=dtype,
cache_dir=cache_path,
**_add_variant({})
)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.to(device)
else:
# SSD-1B + LCM LoRA
from diffusers import AutoPipelineForText2Image
pipe = AutoPipelineForText2Image.from_pretrained(
"segmind/SSD-1B",
torch_dtype=dtype,
cache_dir=cache_path,
**_add_variant({})
)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.to(device)
pipe.load_lora_weights("latent-consistency/lcm-lora-ssd-1b")
pipe.fuse_lora()
# ---- Core generate function ----
def generate(
prompt: str,
negative_prompt: str = "",
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 0.0,
num_inference_steps: int = 4,
secret_token: str = "",
) -> Image.Image:
# Token gate
if secret_token != SECRET_TOKEN:
raise gr.Error("Invalid secret token. Set SECRET_TOKEN on the server or pass the correct token.")
# Clamp sizes (avoid OOM on CPU)
width = int(np.clip(width, 256, MAX_IMAGE_SIZE))
height = int(np.clip(height, 256, MAX_IMAGE_SIZE))
# Deterministic generator on the active device
generator = torch.Generator(device=device)
if seed is not None:
generator = generator.manual_seed(int(seed))
out = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
output_type="pil",
)
return out.images[0]
# ---- Optional notebook helper ----
def generate_image(prompt="A scenic watercolor landscape, mountains at dawn"):
img = generate(
prompt=prompt,
negative_prompt="",
seed=0,
width=1024,
height=1024,
guidance_scale=0.0,
num_inference_steps=4,
secret_token=SECRET_TOKEN,
)
try:
from IPython.display import display
display(img)
except Exception:
pass # Non-notebook environment
# ---- UI (Gradio 3.39.0 components) ----
if not run_api:
secret_token = gr.Textbox(
label="Secret Token",
placeholder="Enter your secret token",
type="password",
)
prompt = gr.Textbox(
label="Prompt",
show_label=True,
max_lines=2,
placeholder="Enter your prompt",
)
negative_prompt = gr.Textbox(
label="Negative prompt",
max_lines=2,
placeholder="Enter a negative prompt (optional)",
)
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
guidance_scale = gr.Slider(label="Guidance scale", minimum=0, maximum=2, step=0.1, value=0.0)
num_inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=8, step=1, value=4)
iface = gr.Interface(
fn=generate,
inputs=[prompt, negative_prompt, seed, width, height, guidance_scale, num_inference_steps, secret_token],
outputs=gr.Image(label="Result"),
title="Image Generator (LCM)",
description="Fast SDXL/SSD-1B image generation with LCM. Uses CPU if CUDA is unavailable.",
)
iface.launch()
if run_api:
with gr.Blocks() as demo:
gr.Markdown(
"### REST API for LCM Text-to-Image\n"
"Use the `/run` endpoint programmatically with your secret."
)
secret_token = gr.Textbox(label="Secret Token", type="password")
prompt = gr.Textbox(label="Prompt")
negative_prompt = gr.Textbox(label="Negative prompt")
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
guidance_scale = gr.Slider(label="Guidance scale", minimum=0, maximum=2, step=0.1, value=0.0)
num_inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=8, step=1, value=4)
inputs = [prompt, negative_prompt, seed, width, height, guidance_scale, num_inference_steps, secret_token]
prompt.submit(fn=generate, inputs=inputs, outputs=gr.Image(), api_name="run")
demo.queue(max_size=32).launch(debug=False)
|