File size: 4,303 Bytes
d2a27fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

#!/usr/bin/env python

import os
import gradio as gr
import numpy as np
import PIL
import base64
import io
import torch

# SSD-1B
#from diffusers import LCMScheduler, AutoPipelineForText2Image

# SDXL
from diffusers import UNet2DConditionModel, DiffusionPipeline, LCMScheduler

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = int(os.getenv('MAX_IMAGE_SIZE', '1024'))
SECRET_TOKEN = os.getenv('SECRET_TOKEN', 'default_secret')

#device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
if torch.cuda.is_available():

    #pipe = AutoPipelineForText2Image.from_pretrained("segmind/SSD-1B", torch_dtype=torch.float16, variant="fp16")
    #pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
    #pipe.to("cuda")

    # load and fuse
    #pipe.load_lora_weights("latent-consistency/lcm-lora-ssd-1b")
    #pipe.fuse_lora()

    unet = UNet2DConditionModel.from_pretrained("latent-consistency/lcm-sdxl", torch_dtype=torch.float16, variant="fp16")
    pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", unet=unet, torch_dtype=torch.float16, variant="fp16")

    pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
    pipe.to('cuda')
    
else:
    pipe = None

def generate(prompt: str,
             negative_prompt: str = '',
             seed: int = 0,
             width: int = 1024,
             height: int = 1024,
             guidance_scale: float = 0.0,
             num_inference_steps: int = 4,
             secret_token: str = '') -> PIL.Image.Image:
    if secret_token != SECRET_TOKEN:
        raise gr.Error(
            f'Invalid secret token. Please fork the original space if you want to use it for yourself.')
        
    generator = torch.Generator().manual_seed(seed)

    image = pipe(prompt=prompt,
                negative_prompt=negative_prompt,
                width=width,
                height=height,
                guidance_scale=guidance_scale,
                num_inference_steps=num_inference_steps,
                generator=generator,
                output_type='pil').images[0]
    
    return image

with gr.Blocks() as demo:
    gr.HTML("""
    <div style="z-index: 100; position: fixed; top: 0px; right: 0px; left: 0px; bottom: 0px; width: 100%; height: 100%; background: white; display: flex; align-items: center; justify-content: center; color: black;">
        <div style="text-align: center; color: black;">
            <p style="color: black;">This space is a REST API to programmatically generate images using LCM LoRA SSD-1B.</p>
            <p style="color: black;">It is not meant to be directly used through a user interface, but using code and an access key.</p>
        </div>
    </div>""")
    secret_token = gr.Text(
        label='Secret Token',
        max_lines=1,
        placeholder='Enter your secret token',
    )
    prompt = gr.Text(
        label='Prompt',
        show_label=False,
        max_lines=1,
        placeholder='Enter your prompt',
        container=False,
    )
    result = gr.Image(label='Result', show_label=False)
    negative_prompt = gr.Text(
        label='Negative prompt',
        max_lines=1,
        placeholder='Enter a negative prompt',
        visible=True,
    )
    seed = gr.Slider(label='Seed',
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0)

    width = gr.Slider(
        label='Width',
        minimum=256,
        maximum=MAX_IMAGE_SIZE,
        step=32,
        value=1024,
    )
    height = gr.Slider(
        label='Height',
        minimum=256,
        maximum=MAX_IMAGE_SIZE,
        step=32,
        value=1024,
    )
    guidance_scale = gr.Slider(
        label='Guidance scale',
        minimum=0,
        maximum=2,
        step=0.1,
        value=0.0)
    num_inference_steps = gr.Slider(
        label='Number of inference steps',
        minimum=1,
        maximum=8,
        step=1,
        value=4)

    inputs = [
        prompt,
        negative_prompt,
        seed,
        width,
        height,
        guidance_scale,
        num_inference_steps,
        secret_token,
    ]
    prompt.submit(
        fn=generate,
        inputs=inputs,
        outputs=result,
        api_name='run',
    )

demo.queue(max_size=32).launch()