Spaces:
Running
on
Zero
Running
on
Zero
First commit
Browse files- .vscode/settings.json +1 -1
- README.md +38 -2
- app.py +110 -212
- requirements.txt +11 -0
.vscode/settings.json
CHANGED
|
@@ -10,7 +10,7 @@
|
|
| 10 |
"[python]": {
|
| 11 |
"editor.formatOnType": true,
|
| 12 |
"editor.codeActionsOnSave": {
|
| 13 |
-
"source.organizeImports":
|
| 14 |
}
|
| 15 |
},
|
| 16 |
"editor.formatOnSave": true,
|
|
|
|
| 10 |
"[python]": {
|
| 11 |
"editor.formatOnType": true,
|
| 12 |
"editor.codeActionsOnSave": {
|
| 13 |
+
"source.organizeImports": "explicit"
|
| 14 |
}
|
| 15 |
},
|
| 16 |
"editor.formatOnSave": true,
|
README.md
CHANGED
|
@@ -4,7 +4,7 @@ emoji: 🌍
|
|
| 4 |
colorFrom: gray
|
| 5 |
colorTo: blue
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
app_file: app.py
|
| 9 |
license: mit
|
| 10 |
pinned: false
|
|
@@ -13,4 +13,40 @@ duplicated_from: hysts/SD-XL
|
|
| 13 |
load_balancing_strategy: random
|
| 14 |
---
|
| 15 |
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
colorFrom: gray
|
| 5 |
colorTo: blue
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 3.39.0
|
| 8 |
app_file: app.py
|
| 9 |
license: mit
|
| 10 |
pinned: false
|
|
|
|
| 13 |
load_balancing_strategy: random
|
| 14 |
---
|
| 15 |
|
| 16 |
+
# AI Fast Image Server
|
| 17 |
+
|
| 18 |
+
A lightweight Gradio app that serves fast **text-to-image** generation using either:
|
| 19 |
+
|
| 20 |
+
- **SDXL Base 1.0 + LCM** (default), or
|
| 21 |
+
- **SSD-1B + LCM LoRA** (enable via a flag in `app.py`)
|
| 22 |
+
|
| 23 |
+
The app targets **very few inference steps** (e.g., 4) for speed while keeping good image quality. It falls back to **CPU** automatically if CUDA isn’t available.
|
| 24 |
+
|
| 25 |
+
---
|
| 26 |
+
|
| 27 |
+
## Features
|
| 28 |
+
|
| 29 |
+
- ⚡ **Fast sampling** with **LCM** schedulers
|
| 30 |
+
- 🔁 **Deterministic** results via seed
|
| 31 |
+
- 🖥️ **Auto GPU/CPU** selection (no brittle `nvidia-smi` checks)
|
| 32 |
+
- 🔐 Optional **secret token** gate to prevent abuse
|
| 33 |
+
- 🧩 Switch between **SDXL** and **SSD-1B+LCM LoRA** with a flag
|
| 34 |
+
|
| 35 |
+
---
|
| 36 |
+
|
| 37 |
+
## Requirements
|
| 38 |
+
|
| 39 |
+
Dependencies are pinned for compatibility (notably `diffusers==0.23.0` + `huggingface_hub==0.14.1`):
|
| 40 |
+
|
| 41 |
+
```txt
|
| 42 |
+
accelerate==0.24.1
|
| 43 |
+
diffusers==0.23.0
|
| 44 |
+
gradio==3.39.0
|
| 45 |
+
huggingface_hub==0.14.1
|
| 46 |
+
invisible-watermark==0.2.0
|
| 47 |
+
Pillow==10.1.0
|
| 48 |
+
torch==2.1.0
|
| 49 |
+
transformers==4.35.0
|
| 50 |
+
safetensors==0.4.0
|
| 51 |
+
numpy>=1.23
|
| 52 |
+
ipython
|
app.py
CHANGED
|
@@ -1,122 +1,106 @@
|
|
|
|
|
| 1 |
run_api = False
|
| 2 |
SSD_1B = False
|
| 3 |
-
import os
|
| 4 |
-
|
| 5 |
-
# Use GPU
|
| 6 |
-
gpu_info = os.popen("nvidia-smi").read()
|
| 7 |
-
if "failed" in gpu_info:
|
| 8 |
-
print("Not connected to a GPU")
|
| 9 |
-
is_gpu = False
|
| 10 |
-
else:
|
| 11 |
-
print(gpu_info)
|
| 12 |
-
is_gpu = True
|
| 13 |
-
print(is_gpu)
|
| 14 |
-
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
from IPython.display import clear_output
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
|
|
|
| 20 |
try:
|
| 21 |
-
import torch
|
| 22 |
-
|
| 23 |
-
print("Enviroment is already installed.")
|
| 24 |
except ImportError:
|
| 25 |
-
print("
|
| 26 |
-
#
|
| 27 |
-
os.system("pip install
|
| 28 |
-
|
| 29 |
-
os.system("pip install gradio==3.39.0")
|
| 30 |
-
# Install python-dotenv
|
| 31 |
-
os.system("pip install python-dotenv")
|
| 32 |
-
# Clear the output
|
| 33 |
clear_output()
|
|
|
|
| 34 |
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
# Call the function to check and install Packages if necessary
|
| 39 |
-
check_enviroment()
|
| 40 |
-
|
| 41 |
|
| 42 |
-
|
| 43 |
-
import os
|
| 44 |
-
import gradio as gr
|
| 45 |
-
import numpy as np
|
| 46 |
-
import PIL
|
| 47 |
-
import base64
|
| 48 |
-
import io
|
| 49 |
import torch
|
|
|
|
|
|
|
| 50 |
from diffusers import UNet2DConditionModel, DiffusionPipeline, LCMScheduler
|
| 51 |
|
| 52 |
-
#
|
| 53 |
-
from diffusers import
|
| 54 |
|
| 55 |
-
#
|
| 56 |
current_dir = os.getcwd()
|
| 57 |
-
model_path = os.path.join(current_dir)
|
| 58 |
-
# Set the cache path
|
| 59 |
cache_path = os.path.join(current_dir, "cache")
|
|
|
|
|
|
|
| 60 |
MAX_SEED = np.iinfo(np.int32).max
|
| 61 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024"))
|
| 62 |
SECRET_TOKEN = os.getenv("SECRET_TOKEN", "default_secret")
|
| 63 |
|
| 64 |
-
#
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
else:
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
if not SSD_1B:
|
| 83 |
-
|
| 84 |
unet = UNet2DConditionModel.from_pretrained(
|
| 85 |
"latent-consistency/lcm-sdxl",
|
| 86 |
-
torch_dtype=
|
| 87 |
-
variant="fp16",
|
| 88 |
cache_dir=cache_path,
|
| 89 |
)
|
| 90 |
pipe = DiffusionPipeline.from_pretrained(
|
| 91 |
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 92 |
unet=unet,
|
| 93 |
-
torch_dtype=
|
| 94 |
-
variant="fp16",
|
| 95 |
cache_dir=cache_path,
|
| 96 |
)
|
| 97 |
-
|
| 98 |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
| 99 |
-
|
| 100 |
-
pipe.to("cuda")
|
| 101 |
else:
|
| 102 |
-
# SSD-1B
|
| 103 |
-
from diffusers import
|
| 104 |
-
|
| 105 |
pipe = AutoPipelineForText2Image.from_pretrained(
|
| 106 |
"segmind/SSD-1B",
|
| 107 |
-
torch_dtype=
|
| 108 |
-
variant="fp16",
|
| 109 |
cache_dir=cache_path,
|
| 110 |
)
|
| 111 |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
| 112 |
-
|
| 113 |
-
pipe.to("cuda")
|
| 114 |
-
|
| 115 |
-
# load and fuse
|
| 116 |
pipe.load_lora_weights("latent-consistency/lcm-lora-ssd-1b")
|
| 117 |
pipe.fuse_lora()
|
| 118 |
|
| 119 |
-
|
| 120 |
def generate(
|
| 121 |
prompt: str,
|
| 122 |
negative_prompt: str = "",
|
|
@@ -126,15 +110,18 @@ def generate(
|
|
| 126 |
guidance_scale: float = 0.0,
|
| 127 |
num_inference_steps: int = 4,
|
| 128 |
secret_token: str = "",
|
| 129 |
-
) ->
|
| 130 |
if secret_token != SECRET_TOKEN:
|
| 131 |
-
raise gr.Error(
|
| 132 |
-
|
| 133 |
-
|
|
|
|
| 134 |
|
| 135 |
-
generator = torch.Generator()
|
|
|
|
|
|
|
| 136 |
|
| 137 |
-
|
| 138 |
prompt=prompt,
|
| 139 |
negative_prompt=negative_prompt,
|
| 140 |
width=width,
|
|
@@ -143,18 +130,14 @@ def generate(
|
|
| 143 |
num_inference_steps=num_inference_steps,
|
| 144 |
generator=generator,
|
| 145 |
output_type="pil",
|
| 146 |
-
)
|
| 147 |
-
return
|
| 148 |
-
|
| 149 |
|
| 150 |
clear_output()
|
| 151 |
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
def generate_image(prompt="A beautiful and sexy girl"):
|
| 156 |
-
# Generate the image using the prompt
|
| 157 |
-
generated_image = generate(
|
| 158 |
prompt=prompt,
|
| 159 |
negative_prompt="",
|
| 160 |
seed=0,
|
|
@@ -162,145 +145,60 @@ def generate_image(prompt="A beautiful and sexy girl"):
|
|
| 162 |
height=1024,
|
| 163 |
guidance_scale=0.0,
|
| 164 |
num_inference_steps=4,
|
| 165 |
-
secret_token=
|
| 166 |
)
|
| 167 |
-
|
| 168 |
-
display(
|
| 169 |
-
|
| 170 |
|
|
|
|
| 171 |
if not run_api:
|
| 172 |
-
secret_token = gr.
|
| 173 |
label="Secret Token",
|
| 174 |
-
max_lines=1,
|
| 175 |
placeholder="Enter your secret token",
|
|
|
|
| 176 |
)
|
| 177 |
-
prompt = gr.
|
| 178 |
label="Prompt",
|
| 179 |
-
show_label=
|
| 180 |
-
max_lines=
|
| 181 |
placeholder="Enter your prompt",
|
| 182 |
-
container=False,
|
| 183 |
)
|
| 184 |
-
|
| 185 |
-
negative_prompt = gr.Text(
|
| 186 |
label="Negative prompt",
|
| 187 |
-
max_lines=
|
| 188 |
-
placeholder="Enter a negative prompt",
|
| 189 |
-
visible=True,
|
| 190 |
)
|
| 191 |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
|
| 193 |
-
width = gr.Slider(
|
| 194 |
-
label="Width",
|
| 195 |
-
minimum=256,
|
| 196 |
-
maximum=MAX_IMAGE_SIZE,
|
| 197 |
-
step=32,
|
| 198 |
-
value=1024,
|
| 199 |
-
)
|
| 200 |
-
height = gr.Slider(
|
| 201 |
-
label="Height",
|
| 202 |
-
minimum=256,
|
| 203 |
-
maximum=MAX_IMAGE_SIZE,
|
| 204 |
-
step=32,
|
| 205 |
-
value=1024,
|
| 206 |
-
)
|
| 207 |
-
guidance_scale = gr.Slider(
|
| 208 |
-
label="Guidance scale", minimum=0, maximum=2, step=0.1, value=0.0
|
| 209 |
-
)
|
| 210 |
-
num_inference_steps = gr.Slider(
|
| 211 |
-
label="Number of inference steps", minimum=1, maximum=8, step=1, value=4
|
| 212 |
-
)
|
| 213 |
-
inputs = [
|
| 214 |
-
prompt,
|
| 215 |
-
negative_prompt,
|
| 216 |
-
seed,
|
| 217 |
-
width,
|
| 218 |
-
height,
|
| 219 |
-
guidance_scale,
|
| 220 |
-
num_inference_steps,
|
| 221 |
-
secret_token,
|
| 222 |
-
]
|
| 223 |
iface = gr.Interface(
|
| 224 |
fn=generate,
|
| 225 |
-
inputs=
|
| 226 |
-
outputs=
|
| 227 |
-
title="Image Generator",
|
| 228 |
-
description="
|
| 229 |
)
|
| 230 |
-
|
| 231 |
iface.launch()
|
| 232 |
|
| 233 |
-
|
| 234 |
if run_api:
|
| 235 |
with gr.Blocks() as demo:
|
| 236 |
-
gr.
|
| 237 |
-
""
|
| 238 |
-
|
| 239 |
-
<div style="text-align: center; color: black;">
|
| 240 |
-
<p style="color: black;">This space is a REST API to programmatically generate images using LCM LoRA SSD-1B.</p>
|
| 241 |
-
<p style="color: black;">It is not meant to be directly used through a user interface, but using code and an access key.</p>
|
| 242 |
-
</div>
|
| 243 |
-
</div>"""
|
| 244 |
-
)
|
| 245 |
-
secret_token = gr.Text(
|
| 246 |
-
label="Secret Token",
|
| 247 |
-
max_lines=1,
|
| 248 |
-
placeholder="Enter your secret token",
|
| 249 |
-
)
|
| 250 |
-
prompt = gr.Text(
|
| 251 |
-
label="Prompt",
|
| 252 |
-
show_label=False,
|
| 253 |
-
max_lines=1,
|
| 254 |
-
placeholder="Enter your prompt",
|
| 255 |
-
container=False,
|
| 256 |
-
)
|
| 257 |
-
result = gr.Image(label="Result", show_label=False)
|
| 258 |
-
negative_prompt = gr.Text(
|
| 259 |
-
label="Negative prompt",
|
| 260 |
-
max_lines=1,
|
| 261 |
-
placeholder="Enter a negative prompt",
|
| 262 |
-
visible=True,
|
| 263 |
)
|
|
|
|
|
|
|
|
|
|
| 264 |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 265 |
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
minimum=256,
|
| 269 |
-
maximum=MAX_IMAGE_SIZE,
|
| 270 |
-
step=32,
|
| 271 |
-
value=1024,
|
| 272 |
-
)
|
| 273 |
-
height = gr.Slider(
|
| 274 |
-
label="Height",
|
| 275 |
-
minimum=256,
|
| 276 |
-
maximum=MAX_IMAGE_SIZE,
|
| 277 |
-
step=32,
|
| 278 |
-
value=1024,
|
| 279 |
-
)
|
| 280 |
-
guidance_scale = gr.Slider(
|
| 281 |
-
label="Guidance scale", minimum=0, maximum=2, step=0.1, value=0.0
|
| 282 |
-
)
|
| 283 |
-
num_inference_steps = gr.Slider(
|
| 284 |
-
label="Number of inference steps", minimum=1, maximum=8, step=1, value=4
|
| 285 |
-
)
|
| 286 |
-
|
| 287 |
-
inputs = [
|
| 288 |
-
prompt,
|
| 289 |
-
negative_prompt,
|
| 290 |
-
seed,
|
| 291 |
-
width,
|
| 292 |
-
height,
|
| 293 |
-
guidance_scale,
|
| 294 |
-
num_inference_steps,
|
| 295 |
-
secret_token,
|
| 296 |
-
]
|
| 297 |
-
prompt.submit(
|
| 298 |
-
fn=generate,
|
| 299 |
-
inputs=inputs,
|
| 300 |
-
outputs=result,
|
| 301 |
-
api_name="run",
|
| 302 |
-
)
|
| 303 |
|
| 304 |
-
|
| 305 |
-
# Launch the Gradio app with multiple workers and debug mode enabled
|
| 306 |
-
demo.queue(max_size=32).launch(debug=True)
|
|
|
|
| 1 |
+
# ---- Flags ----
|
| 2 |
run_api = False
|
| 3 |
SSD_1B = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
+
# ---- Standard imports ----
|
| 6 |
+
import os
|
| 7 |
+
import subprocess
|
| 8 |
+
import numpy as np
|
| 9 |
from IPython.display import clear_output
|
| 10 |
|
| 11 |
+
# ---- Minimal, deterministic env bootstrap (optional) ----
|
| 12 |
+
# Prefer pinning in requirements.txt instead of installing here.
|
| 13 |
+
def check_environment():
|
| 14 |
try:
|
| 15 |
+
import torch # noqa: F401
|
| 16 |
+
print("Environment is already installed.")
|
|
|
|
| 17 |
except ImportError:
|
| 18 |
+
print("Environment not found. Installing pinned dependencies...")
|
| 19 |
+
# Strongly prefer doing this via requirements.txt at build time.
|
| 20 |
+
os.system("pip install --upgrade pip")
|
| 21 |
+
os.system("pip install diffusers==0.30.0 transformers>=4.41.0 accelerate>=0.31.0 huggingface_hub>=0.23.4 safetensors>=0.4.2 gradio==4.37.1 python-dotenv")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
clear_output()
|
| 23 |
+
print("Environment installed successfully.")
|
| 24 |
|
| 25 |
+
check_environment()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
+
# ---- App imports (safe after environment check) ----
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
import torch
|
| 29 |
+
import gradio as gr
|
| 30 |
+
from PIL import Image
|
| 31 |
from diffusers import UNet2DConditionModel, DiffusionPipeline, LCMScheduler
|
| 32 |
|
| 33 |
+
# Optional: only imported if SSD_1B=True
|
| 34 |
+
# from diffusers import AutoPipelineForText2Image
|
| 35 |
|
| 36 |
+
# ---- Config / constants ----
|
| 37 |
current_dir = os.getcwd()
|
|
|
|
|
|
|
| 38 |
cache_path = os.path.join(current_dir, "cache")
|
| 39 |
+
os.makedirs(cache_path, exist_ok=True)
|
| 40 |
+
|
| 41 |
MAX_SEED = np.iinfo(np.int32).max
|
| 42 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024"))
|
| 43 |
SECRET_TOKEN = os.getenv("SECRET_TOKEN", "default_secret")
|
| 44 |
|
| 45 |
+
# ---- GPU / NVML detection (robust) ----
|
| 46 |
+
def print_nvidia_smi():
|
| 47 |
+
try:
|
| 48 |
+
proc = subprocess.run(["nvidia-smi"], capture_output=True, text=True)
|
| 49 |
+
if proc.returncode == 0:
|
| 50 |
+
print(proc.stdout)
|
| 51 |
+
else:
|
| 52 |
+
# Show the stderr to aid debugging, but don't trust it for logic
|
| 53 |
+
print(proc.stderr or "nvidia-smi returned a non-zero exit code.")
|
| 54 |
+
except FileNotFoundError:
|
| 55 |
+
print("nvidia-smi not found on PATH.")
|
| 56 |
+
|
| 57 |
+
print_nvidia_smi()
|
| 58 |
+
|
| 59 |
+
is_gpu = torch.cuda.is_available()
|
| 60 |
+
print(f"CUDA available: {is_gpu}")
|
| 61 |
+
|
| 62 |
+
# dtype & device
|
| 63 |
+
dtype = torch.float16 if is_gpu else torch.float32
|
| 64 |
+
device = torch.device("cuda") if is_gpu else torch.device("cpu")
|
| 65 |
+
|
| 66 |
+
# Optional: fewer surprises when CUDA is flaky
|
| 67 |
+
if not is_gpu:
|
| 68 |
+
# Avoid cuda-related env flags when no GPU
|
| 69 |
+
os.environ.pop("CUDA_LAUNCH_BLOCKING", None)
|
| 70 |
+
|
| 71 |
+
# ---- Pipeline setup ----
|
| 72 |
if not SSD_1B:
|
| 73 |
+
# SDXL base + LCM UNet
|
| 74 |
unet = UNet2DConditionModel.from_pretrained(
|
| 75 |
"latent-consistency/lcm-sdxl",
|
| 76 |
+
torch_dtype=dtype,
|
| 77 |
+
variant="fp16" if is_gpu else None,
|
| 78 |
cache_dir=cache_path,
|
| 79 |
)
|
| 80 |
pipe = DiffusionPipeline.from_pretrained(
|
| 81 |
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 82 |
unet=unet,
|
| 83 |
+
torch_dtype=dtype,
|
| 84 |
+
variant="fp16" if is_gpu else None,
|
| 85 |
cache_dir=cache_path,
|
| 86 |
)
|
|
|
|
| 87 |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
| 88 |
+
pipe.to(device)
|
|
|
|
| 89 |
else:
|
| 90 |
+
# SSD-1B + LCM LoRA
|
| 91 |
+
from diffusers import AutoPipelineForText2Image # local import
|
|
|
|
| 92 |
pipe = AutoPipelineForText2Image.from_pretrained(
|
| 93 |
"segmind/SSD-1B",
|
| 94 |
+
torch_dtype=dtype,
|
| 95 |
+
variant="fp16" if is_gpu else None,
|
| 96 |
cache_dir=cache_path,
|
| 97 |
)
|
| 98 |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
| 99 |
+
pipe.to(device)
|
|
|
|
|
|
|
|
|
|
| 100 |
pipe.load_lora_weights("latent-consistency/lcm-lora-ssd-1b")
|
| 101 |
pipe.fuse_lora()
|
| 102 |
|
| 103 |
+
# ---- Core generate function ----
|
| 104 |
def generate(
|
| 105 |
prompt: str,
|
| 106 |
negative_prompt: str = "",
|
|
|
|
| 110 |
guidance_scale: float = 0.0,
|
| 111 |
num_inference_steps: int = 4,
|
| 112 |
secret_token: str = "",
|
| 113 |
+
) -> Image.Image:
|
| 114 |
if secret_token != SECRET_TOKEN:
|
| 115 |
+
raise gr.Error("Invalid secret token. Set SECRET_TOKEN on the server or pass the correct token.")
|
| 116 |
+
# Make sure sizes are sane on CPU
|
| 117 |
+
width = int(np.clip(width, 256, MAX_IMAGE_SIZE))
|
| 118 |
+
height = int(np.clip(height, 256, MAX_IMAGE_SIZE))
|
| 119 |
|
| 120 |
+
generator = torch.Generator(device=device)
|
| 121 |
+
if seed is not None:
|
| 122 |
+
generator = generator.manual_seed(int(seed))
|
| 123 |
|
| 124 |
+
out = pipe(
|
| 125 |
prompt=prompt,
|
| 126 |
negative_prompt=negative_prompt,
|
| 127 |
width=width,
|
|
|
|
| 130 |
num_inference_steps=num_inference_steps,
|
| 131 |
generator=generator,
|
| 132 |
output_type="pil",
|
| 133 |
+
)
|
| 134 |
+
return out.images[0]
|
|
|
|
| 135 |
|
| 136 |
clear_output()
|
| 137 |
|
| 138 |
+
# ---- Optional notebook helper ----
|
| 139 |
+
def generate_image(prompt="A scenic watercolor landscape, mountains at dawn"):
|
| 140 |
+
img = generate(
|
|
|
|
|
|
|
|
|
|
| 141 |
prompt=prompt,
|
| 142 |
negative_prompt="",
|
| 143 |
seed=0,
|
|
|
|
| 145 |
height=1024,
|
| 146 |
guidance_scale=0.0,
|
| 147 |
num_inference_steps=4,
|
| 148 |
+
secret_token=SECRET_TOKEN,
|
| 149 |
)
|
| 150 |
+
from IPython.display import display
|
| 151 |
+
display(img)
|
|
|
|
| 152 |
|
| 153 |
+
# ---- UI ----
|
| 154 |
if not run_api:
|
| 155 |
+
secret_token = gr.Textbox(
|
| 156 |
label="Secret Token",
|
|
|
|
| 157 |
placeholder="Enter your secret token",
|
| 158 |
+
type="password",
|
| 159 |
)
|
| 160 |
+
prompt = gr.Textbox(
|
| 161 |
label="Prompt",
|
| 162 |
+
show_label=True,
|
| 163 |
+
max_lines=2,
|
| 164 |
placeholder="Enter your prompt",
|
|
|
|
| 165 |
)
|
| 166 |
+
negative_prompt = gr.Textbox(
|
|
|
|
| 167 |
label="Negative prompt",
|
| 168 |
+
max_lines=2,
|
| 169 |
+
placeholder="Enter a negative prompt (optional)",
|
|
|
|
| 170 |
)
|
| 171 |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
| 172 |
+
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
|
| 173 |
+
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
|
| 174 |
+
guidance_scale = gr.Slider(label="Guidance scale", minimum=0, maximum=2, step=0.1, value=0.0)
|
| 175 |
+
num_inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=8, step=1, value=4)
|
| 176 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
iface = gr.Interface(
|
| 178 |
fn=generate,
|
| 179 |
+
inputs=[prompt, negative_prompt, seed, width, height, guidance_scale, num_inference_steps, secret_token],
|
| 180 |
+
outputs=gr.Image(label="Result"),
|
| 181 |
+
title="Image Generator (LCM)",
|
| 182 |
+
description="Fast SDXL/SSD-1B image generation with LCM. Uses CPU if CUDA is unavailable.",
|
| 183 |
)
|
|
|
|
| 184 |
iface.launch()
|
| 185 |
|
|
|
|
| 186 |
if run_api:
|
| 187 |
with gr.Blocks() as demo:
|
| 188 |
+
gr.Markdown(
|
| 189 |
+
"### REST API for LCM Text-to-Image\n"
|
| 190 |
+
"Use the `/run` endpoint programmatically with your secret."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
)
|
| 192 |
+
secret_token = gr.Textbox(label="Secret Token", type="password")
|
| 193 |
+
prompt = gr.Textbox(label="Prompt")
|
| 194 |
+
negative_prompt = gr.Textbox(label="Negative prompt")
|
| 195 |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
| 196 |
+
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
|
| 197 |
+
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
|
| 198 |
+
guidance_scale = gr.Slider(label="Guidance scale", minimum=0, maximum=2, step=0.1, value=0.0)
|
| 199 |
+
num_inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=8, step=1, value=4)
|
| 200 |
|
| 201 |
+
inputs = [prompt, negative_prompt, seed, width, height, guidance_scale, num_inference_steps, secret_token]
|
| 202 |
+
prompt.submit(fn=generate, inputs=inputs, outputs=gr.Image(), api_name="run")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
|
| 204 |
+
demo.queue(max_size=32).launch(debug=False)
|
|
|
|
|
|
requirements.txt
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
accelerate==0.24.1
|
| 2 |
diffusers==0.23.0
|
| 3 |
gradio==3.39.0
|
|
@@ -6,3 +7,13 @@ Pillow==10.1.0
|
|
| 6 |
torch==2.1.0
|
| 7 |
transformers==4.35.0
|
| 8 |
ipython
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Core stack (kept at your versions)
|
| 2 |
accelerate==0.24.1
|
| 3 |
diffusers==0.23.0
|
| 4 |
gradio==3.39.0
|
|
|
|
| 7 |
torch==2.1.0
|
| 8 |
transformers==4.35.0
|
| 9 |
ipython
|
| 10 |
+
|
| 11 |
+
# Must-add pins for compatibility
|
| 12 |
+
# diffusers==0.23.0 expects `cached_download` to exist in huggingface_hub
|
| 13 |
+
huggingface_hub==0.14.1
|
| 14 |
+
|
| 15 |
+
# Recommended: used by diffusers/transformers when loading weights
|
| 16 |
+
safetensors==0.4.0
|
| 17 |
+
|
| 18 |
+
# Your code imports numpy directly
|
| 19 |
+
numpy>=1.23
|