Spaces:
Running
on
Zero
Running
on
Zero
updates
Browse files- app.py +58 -39
- requirements.txt +1 -0
app.py
CHANGED
|
@@ -1,6 +1,5 @@
|
|
| 1 |
run_api = False
|
| 2 |
SSD_1B = False
|
| 3 |
-
|
| 4 |
import os
|
| 5 |
|
| 6 |
# Use GPU
|
|
@@ -13,6 +12,7 @@ else:
|
|
| 13 |
is_gpu = True
|
| 14 |
print(is_gpu)
|
| 15 |
|
|
|
|
| 16 |
from IPython.display import clear_output
|
| 17 |
|
| 18 |
|
|
@@ -38,6 +38,7 @@ def check_enviroment():
|
|
| 38 |
# Call the function to check and install Packages if necessary
|
| 39 |
check_enviroment()
|
| 40 |
|
|
|
|
| 41 |
from IPython.display import clear_output
|
| 42 |
import os
|
| 43 |
import gradio as gr
|
|
@@ -70,51 +71,50 @@ else:
|
|
| 70 |
# Uncomment the following line if you want to use CPU instead of GPU
|
| 71 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 72 |
|
| 73 |
-
if torch.cuda.is_available():
|
| 74 |
-
# Get the current directory
|
| 75 |
-
current_dir = os.getcwd()
|
| 76 |
-
model_path = os.path.join(current_dir)
|
| 77 |
|
| 78 |
-
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
-
|
| 82 |
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
|
| 97 |
-
|
|
|
|
| 98 |
pipe.to("cuda")
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
|
|
|
| 110 |
pipe.to("cuda")
|
| 111 |
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
else:
|
| 117 |
-
pipe = None
|
| 118 |
|
| 119 |
|
| 120 |
def generate(
|
|
@@ -149,6 +149,25 @@ def generate(
|
|
| 149 |
|
| 150 |
clear_output()
|
| 151 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
if not run_api:
|
| 153 |
secret_token = gr.Text(
|
| 154 |
label="Secret Token",
|
|
|
|
| 1 |
run_api = False
|
| 2 |
SSD_1B = False
|
|
|
|
| 3 |
import os
|
| 4 |
|
| 5 |
# Use GPU
|
|
|
|
| 12 |
is_gpu = True
|
| 13 |
print(is_gpu)
|
| 14 |
|
| 15 |
+
|
| 16 |
from IPython.display import clear_output
|
| 17 |
|
| 18 |
|
|
|
|
| 38 |
# Call the function to check and install Packages if necessary
|
| 39 |
check_enviroment()
|
| 40 |
|
| 41 |
+
|
| 42 |
from IPython.display import clear_output
|
| 43 |
import os
|
| 44 |
import gradio as gr
|
|
|
|
| 71 |
# Uncomment the following line if you want to use CPU instead of GPU
|
| 72 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
+
# Get the current directory
|
| 76 |
+
current_dir = os.getcwd()
|
| 77 |
+
model_path = os.path.join(current_dir)
|
| 78 |
+
|
| 79 |
+
# Set the cache path
|
| 80 |
+
cache_path = os.path.join(current_dir, "cache")
|
| 81 |
|
| 82 |
+
if not SSD_1B:
|
| 83 |
|
| 84 |
+
unet = UNet2DConditionModel.from_pretrained(
|
| 85 |
+
"latent-consistency/lcm-sdxl",
|
| 86 |
+
torch_dtype=torch.float16,
|
| 87 |
+
variant="fp16",
|
| 88 |
+
cache_dir=cache_path,
|
| 89 |
+
)
|
| 90 |
+
pipe = DiffusionPipeline.from_pretrained(
|
| 91 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 92 |
+
unet=unet,
|
| 93 |
+
torch_dtype=torch.float16,
|
| 94 |
+
variant="fp16",
|
| 95 |
+
cache_dir=cache_path,
|
| 96 |
+
)
|
| 97 |
|
| 98 |
+
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
| 99 |
+
if torch.cuda.is_available():
|
| 100 |
pipe.to("cuda")
|
| 101 |
+
else:
|
| 102 |
+
# SSD-1B
|
| 103 |
+
from diffusers import LCMScheduler, AutoPipelineForText2Image
|
| 104 |
+
|
| 105 |
+
pipe = AutoPipelineForText2Image.from_pretrained(
|
| 106 |
+
"segmind/SSD-1B",
|
| 107 |
+
torch_dtype=torch.float16,
|
| 108 |
+
variant="fp16",
|
| 109 |
+
cache_dir=cache_path,
|
| 110 |
+
)
|
| 111 |
+
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
| 112 |
+
if torch.cuda.is_available():
|
| 113 |
pipe.to("cuda")
|
| 114 |
|
| 115 |
+
# load and fuse
|
| 116 |
+
pipe.load_lora_weights("latent-consistency/lcm-lora-ssd-1b")
|
| 117 |
+
pipe.fuse_lora()
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
|
| 120 |
def generate(
|
|
|
|
| 149 |
|
| 150 |
clear_output()
|
| 151 |
|
| 152 |
+
from IPython.display import display
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
def generate_image(prompt="A beautiful and sexy girl"):
|
| 156 |
+
# Generate the image using the prompt
|
| 157 |
+
generated_image = generate(
|
| 158 |
+
prompt=prompt,
|
| 159 |
+
negative_prompt="",
|
| 160 |
+
seed=0,
|
| 161 |
+
width=1024,
|
| 162 |
+
height=1024,
|
| 163 |
+
guidance_scale=0.0,
|
| 164 |
+
num_inference_steps=4,
|
| 165 |
+
secret_token="default_secret", # Replace with your secret token
|
| 166 |
+
)
|
| 167 |
+
# Display the image in the Jupyter Notebook
|
| 168 |
+
display(generated_image)
|
| 169 |
+
|
| 170 |
+
|
| 171 |
if not run_api:
|
| 172 |
secret_token = gr.Text(
|
| 173 |
label="Secret Token",
|
requirements.txt
CHANGED
|
@@ -5,3 +5,4 @@ invisible-watermark==0.2.0
|
|
| 5 |
Pillow==10.1.0
|
| 6 |
torch==2.1.0
|
| 7 |
transformers==4.35.0
|
|
|
|
|
|
| 5 |
Pillow==10.1.0
|
| 6 |
torch==2.1.0
|
| 7 |
transformers==4.35.0
|
| 8 |
+
ipython
|