Update app.py
Browse files
app.py
CHANGED
|
@@ -1,154 +1,375 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
| 3 |
-
import
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
from diffusers import DiffusionPipeline
|
| 7 |
import torch
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
):
|
| 36 |
-
|
| 37 |
-
seed = random.randint(0, MAX_SEED)
|
| 38 |
-
|
| 39 |
-
generator = torch.Generator().manual_seed(seed)
|
| 40 |
-
|
| 41 |
-
image = pipe(
|
| 42 |
-
prompt=prompt,
|
| 43 |
-
negative_prompt=negative_prompt,
|
| 44 |
-
guidance_scale=guidance_scale,
|
| 45 |
-
num_inference_steps=num_inference_steps,
|
| 46 |
-
width=width,
|
| 47 |
-
height=height,
|
| 48 |
-
generator=generator,
|
| 49 |
-
).images[0]
|
| 50 |
-
|
| 51 |
-
return image, seed
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
examples = [
|
| 55 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
| 56 |
-
"An astronaut riding a green horse",
|
| 57 |
-
"A delicious ceviche cheesecake slice",
|
| 58 |
-
]
|
| 59 |
-
|
| 60 |
-
css = """
|
| 61 |
-
#col-container {
|
| 62 |
-
margin: 0 auto;
|
| 63 |
-
max-width: 640px;
|
| 64 |
-
}
|
| 65 |
-
"""
|
| 66 |
-
|
| 67 |
-
with gr.Blocks(css=css) as demo:
|
| 68 |
-
with gr.Column(elem_id="col-container"):
|
| 69 |
-
gr.Markdown(" # Text-to-Image Gradio Template")
|
| 70 |
-
|
| 71 |
-
with gr.Row():
|
| 72 |
-
prompt = gr.Text(
|
| 73 |
-
label="Prompt",
|
| 74 |
-
show_label=False,
|
| 75 |
-
max_lines=1,
|
| 76 |
-
placeholder="Enter your prompt",
|
| 77 |
-
container=False,
|
| 78 |
-
)
|
| 79 |
|
| 80 |
-
|
| 81 |
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
)
|
|
|
|
| 91 |
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
)
|
| 99 |
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
num_inference_steps = gr.Slider(
|
| 129 |
-
label="Number of inference steps",
|
| 130 |
-
minimum=1,
|
| 131 |
-
maximum=50,
|
| 132 |
-
step=1,
|
| 133 |
-
value=2, # Replace with defaults that work for your model
|
| 134 |
-
)
|
| 135 |
-
|
| 136 |
-
gr.Examples(examples=examples, inputs=[prompt])
|
| 137 |
-
gr.on(
|
| 138 |
-
triggers=[run_button.click, prompt.submit],
|
| 139 |
-
fn=infer,
|
| 140 |
-
inputs=[
|
| 141 |
-
prompt,
|
| 142 |
-
negative_prompt,
|
| 143 |
-
seed,
|
| 144 |
-
randomize_seed,
|
| 145 |
-
width,
|
| 146 |
-
height,
|
| 147 |
-
guidance_scale,
|
| 148 |
-
num_inference_steps,
|
| 149 |
-
],
|
| 150 |
-
outputs=[result, seed],
|
| 151 |
-
)
|
| 152 |
|
| 153 |
if __name__ == "__main__":
|
| 154 |
-
demo.launch()
|
|
|
|
| 1 |
+
import time
|
| 2 |
import gradio as gr
|
| 3 |
+
from transformers import pipeline
|
| 4 |
+
from huggingface_hub import InferenceClient
|
| 5 |
+
from typing import List, Dict, Tuple, Any, Optional
|
| 6 |
+
from diffusers import AutoPipelineForText2Image
|
|
|
|
| 7 |
import torch
|
| 8 |
|
| 9 |
+
# Article Analysis Constants
|
| 10 |
+
MAX_CHAR = 8000
|
| 11 |
+
NER_NUM_ROWS = 10
|
| 12 |
+
|
| 13 |
+
# Model Constants
|
| 14 |
+
SUMM_MODEL_ID = "sshleifer/distilbart-cnn-12-6"
|
| 15 |
+
SENTIMENT_MODEL_ID = "ahmedrachid/FinancialBERT-Sentiment-Analysis"
|
| 16 |
+
FINCLS_MODEL_ID = "nickmuchi/distilroberta-finetuned-financial-text-classification"
|
| 17 |
+
NER_MODEL_ID = "dslim/bert-base-NER"
|
| 18 |
+
CHAT_MODEL_ID = "openai/gpt-oss-20b"
|
| 19 |
+
IMAGE_MODEL_ID = "stabilityai/sd-turbo"
|
| 20 |
+
|
| 21 |
+
_summ_pipe = None
|
| 22 |
+
_sentiment_pipe = None
|
| 23 |
+
_fincls_pipe = None
|
| 24 |
+
_ner_pipe = None
|
| 25 |
+
_img_pipe_cpu = None
|
| 26 |
+
|
| 27 |
+
# Image Constants
|
| 28 |
+
IMG_STEPS = 2
|
| 29 |
+
IMG_GUIDANCE = 0.5
|
| 30 |
+
IMG_WIDTH = 512
|
| 31 |
+
IMG_HEIGHT = 512
|
| 32 |
+
|
| 33 |
+
# Chat Constants
|
| 34 |
+
CHAT_MAX_TOKENS = 512
|
| 35 |
+
CHAT_TEMPERATURE = 0.7
|
| 36 |
+
CHAT_TOP_P = 0.95
|
| 37 |
+
CHAT_SYSTEM_PROMPT = ("\nYou are assisting with analysis of a financial news article."
|
| 38 |
+
+ "\nBe clear, cite facts from context, and avoid investment advice."
|
| 39 |
+
+ "\nUse the provided ARTICLE as your primary context."
|
| 40 |
+
+ "\nIf the user asks about something not in context, say what you do/don't know."
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
DEVICE_CPU = -1
|
| 44 |
+
|
| 45 |
+
# Assignment 4 Pipelines
|
| 46 |
+
def _get_summ_pipe():
|
| 47 |
+
global _summ_pipe
|
| 48 |
+
if _summ_pipe is None:
|
| 49 |
+
_summ_pipe = pipeline(
|
| 50 |
+
"summarization",
|
| 51 |
+
model=SUMM_MODEL_ID,
|
| 52 |
+
device=DEVICE_CPU,
|
| 53 |
+
)
|
| 54 |
+
return _summ_pipe
|
| 55 |
+
|
| 56 |
+
def _get_sentiment_pipe():
|
| 57 |
+
global _sentiment_pipe
|
| 58 |
+
if _sentiment_pipe is None:
|
| 59 |
+
_sentiment_pipe = pipeline(
|
| 60 |
+
"text-classification",
|
| 61 |
+
model=SENTIMENT_MODEL_ID,
|
| 62 |
+
truncation=True,
|
| 63 |
+
device=DEVICE_CPU,
|
| 64 |
+
)
|
| 65 |
+
return _sentiment_pipe
|
| 66 |
|
| 67 |
+
def _get_fincls_pipe():
|
| 68 |
+
global _fincls_pipe
|
| 69 |
+
if _fincls_pipe is None:
|
| 70 |
+
_fincls_pipe = pipeline(
|
| 71 |
+
"text-classification",
|
| 72 |
+
model=FINCLS_MODEL_ID,
|
| 73 |
+
truncation=True,
|
| 74 |
+
return_all_scores=True,
|
| 75 |
+
device=DEVICE_CPU,
|
| 76 |
+
)
|
| 77 |
+
return _fincls_pipe
|
| 78 |
|
| 79 |
+
def _get_ner_pipe():
|
| 80 |
+
global _ner_pipe
|
| 81 |
+
if _ner_pipe is None:
|
| 82 |
+
_ner_pipe = pipeline(
|
| 83 |
+
"token-classification",
|
| 84 |
+
model=NER_MODEL_ID,
|
| 85 |
+
aggregation_strategy="simple",
|
| 86 |
+
device=DEVICE_CPU,
|
| 87 |
+
)
|
| 88 |
+
return _ner_pipe
|
| 89 |
|
| 90 |
+
# Image Generation
|
| 91 |
+
# Return a plain string token from LoginButton value.
|
| 92 |
+
def _hf_token_str(hf_token):
|
| 93 |
+
if hf_token is None:
|
| 94 |
+
return None
|
| 95 |
+
if isinstance(hf_token, str):
|
| 96 |
+
return hf_token or None
|
| 97 |
+
# gr.OAuthToken-like object
|
| 98 |
+
if hasattr(hf_token, "token"):
|
| 99 |
+
return hf_token.token
|
| 100 |
+
# dict {"token": "..."}
|
| 101 |
+
if isinstance(hf_token, dict):
|
| 102 |
+
return hf_token.get("token")
|
| 103 |
+
return None
|
| 104 |
|
| 105 |
+
def _get_img_pipe_cpu():
|
| 106 |
+
global _img_pipe_cpu
|
| 107 |
+
if _img_pipe_cpu is None:
|
| 108 |
+
pipe = AutoPipelineForText2Image.from_pretrained(
|
| 109 |
+
IMAGE_MODEL_ID,
|
| 110 |
+
torch_dtype=torch.float32,
|
| 111 |
+
use_safetensors=True,
|
| 112 |
+
)
|
| 113 |
+
pipe.to("cpu")
|
| 114 |
+
for fn in ("enable_attention_slicing", "enable_vae_slicing"):
|
| 115 |
+
try:
|
| 116 |
+
getattr(pipe, fn)()
|
| 117 |
+
except Exception:
|
| 118 |
+
pass
|
| 119 |
+
_img_pipe_cpu = pipe
|
| 120 |
+
return _img_pipe_cpu
|
| 121 |
|
| 122 |
+
def _try_cloud_text2image(prompt: str, hf_token: Optional[gr.OAuthToken]):
|
| 123 |
+
tok = getattr(hf_token, "token", None) if hf_token else None
|
| 124 |
+
if not tok:
|
| 125 |
+
return None
|
| 126 |
+
try:
|
| 127 |
+
client = InferenceClient(token=tok)
|
| 128 |
+
return client.text_to_image(prompt, model=IMAGE_MODEL_ID)
|
| 129 |
+
except Exception:
|
| 130 |
+
return None
|
| 131 |
+
|
| 132 |
+
# Analysis helpers
|
| 133 |
+
def _normalize_text(text: str, max_len: int = MAX_CHAR) -> str:
|
| 134 |
+
return (text or "").strip()[:max_len]
|
| 135 |
+
|
| 136 |
+
def run_summary(text: str) -> str:
|
| 137 |
+
try:
|
| 138 |
+
txt = _normalize_text(text, MAX_CHAR)
|
| 139 |
+
if not txt:
|
| 140 |
+
return ""
|
| 141 |
+
sp = _get_summ_pipe()
|
| 142 |
+
out = sp(txt[:3000], max_length=160, min_length=48, do_sample=False)
|
| 143 |
+
return out[0]["summary_text"].strip() if out else ""
|
| 144 |
+
except Exception as e:
|
| 145 |
+
print("Summary error:", e)
|
| 146 |
+
return ""
|
| 147 |
+
|
| 148 |
+
def run_text_nlp(text: str) -> Tuple[str, float, str, float]:
|
| 149 |
+
try:
|
| 150 |
+
txt = _normalize_text(text)
|
| 151 |
+
if not txt:
|
| 152 |
+
return "", 0.0, "", 0.0
|
| 153 |
+
sp = _get_sentiment_pipe()
|
| 154 |
+
fp = _get_fincls_pipe()
|
| 155 |
+
s_pred = sp(txt)[0]
|
| 156 |
+
dist = fp(txt)[0]
|
| 157 |
+
top = max(dist, key=lambda d: d["score"]) if dist else {"label": "", "score": 0.0}
|
| 158 |
+
return (
|
| 159 |
+
s_pred.get("label", ""),
|
| 160 |
+
float(s_pred.get("score", 0.0)),
|
| 161 |
+
top.get("label", ""),
|
| 162 |
+
float(top.get("score", 0.0)),
|
| 163 |
+
)
|
| 164 |
+
except Exception as e:
|
| 165 |
+
print("Text NLP error:", e)
|
| 166 |
+
return "Error", 0.0, "Error", 0.0
|
| 167 |
+
|
| 168 |
+
def run_ner_rows(text: str, limit: int = NER_NUM_ROWS) -> List[List[str]]:
|
| 169 |
+
try:
|
| 170 |
+
txt = _normalize_text(text, MAX_CHAR)
|
| 171 |
+
if not txt:
|
| 172 |
+
return []
|
| 173 |
+
ner = _get_ner_pipe()
|
| 174 |
+
ents = ner(txt)
|
| 175 |
+
rows = [
|
| 176 |
+
[e.get("entity_group", ""), e.get("word", ""), f"{float(e.get('score', 0.0)):.2f}"]
|
| 177 |
+
for e in ents
|
| 178 |
+
]
|
| 179 |
+
return rows[:limit]
|
| 180 |
+
except Exception as e:
|
| 181 |
+
print("NER error:", e)
|
| 182 |
+
return [["Error", str(e), "0.00"]]
|
| 183 |
+
|
| 184 |
+
# Chat helpers
|
| 185 |
+
def build_context_block(article: str, analysis: Dict[str, Any]) -> str:
|
| 186 |
+
parts = []
|
| 187 |
+
if article:
|
| 188 |
+
parts.append(f"ARTICLE (truncated):\n{article[:MAX_CHAR]}")
|
| 189 |
+
if analysis:
|
| 190 |
+
parts.append(
|
| 191 |
+
"ANALYSIS SUMMARY:\n"
|
| 192 |
+
f"- Sentiment: {analysis.get('sentiment')} ({analysis.get('sentiment_score'):.2f})\n"
|
| 193 |
+
f"- Financial stance: {analysis.get('category')} ({analysis.get('category_score'):.2f})"
|
| 194 |
+
)
|
| 195 |
+
if analysis.get("summary"):
|
| 196 |
+
parts.append(f"- Auto Summary: {analysis['summary']}")
|
| 197 |
+
ents = analysis.get("entities", [])
|
| 198 |
+
if ents:
|
| 199 |
+
ent_str = ", ".join({r[1] for r in ents[:40]})
|
| 200 |
+
parts.append(f"- Top entities: {ent_str}")
|
| 201 |
+
return "\n\n".join(parts)
|
| 202 |
+
|
| 203 |
+
def _warn_if_no_token(hf_token: Optional[gr.OAuthToken]) -> str:
|
| 204 |
+
if not hf_token or not getattr(hf_token, "token", None):
|
| 205 |
+
return "\nYou are not logged in to Hugging Face. Click **Login** (left sidebar) for better reliability.\n\n"
|
| 206 |
+
return ""
|
| 207 |
+
|
| 208 |
+
def respond_chat(
|
| 209 |
+
message: str,
|
| 210 |
+
history: List[Dict[str, str]],
|
| 211 |
+
article_text: str,
|
| 212 |
+
analysis: Dict[str, Any],
|
| 213 |
+
hf_token: gr.OAuthToken,
|
| 214 |
+
_profile,
|
| 215 |
):
|
| 216 |
+
tok = _hf_token_str(hf_token)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
|
| 218 |
+
login_notice = _warn_if_no_token(hf_token)
|
| 219 |
|
| 220 |
+
client = InferenceClient(
|
| 221 |
+
token=tok,
|
| 222 |
+
model=CHAT_MODEL_ID
|
| 223 |
+
)
|
| 224 |
+
|
| 225 |
+
context_block = build_context_block(article_text or "", analysis or {})
|
| 226 |
+
sys = (CHAT_SYSTEM_PROMPT)
|
| 227 |
+
|
| 228 |
+
messages = [
|
| 229 |
+
{"role": "system", "content": sys},
|
| 230 |
+
{"role": "system", "content": context_block},
|
| 231 |
+
*history,
|
| 232 |
+
{"role": "user", "content": message},
|
| 233 |
+
]
|
| 234 |
+
|
| 235 |
+
response = login_notice
|
| 236 |
+
try:
|
| 237 |
+
stream = client.chat_completion(
|
| 238 |
+
messages,
|
| 239 |
+
max_tokens=CHAT_MAX_TOKENS,
|
| 240 |
+
stream=True,
|
| 241 |
+
temperature=CHAT_TEMPERATURE,
|
| 242 |
+
top_p=CHAT_TOP_P,
|
| 243 |
+
)
|
| 244 |
+
for chunk in stream:
|
| 245 |
+
choices = getattr(chunk, "choices", [])
|
| 246 |
+
piece = ""
|
| 247 |
+
if choices and getattr(choices[0], "delta", None) and choices[0].delta.content:
|
| 248 |
+
piece = choices[0].delta.content
|
| 249 |
+
response += piece
|
| 250 |
+
yield response
|
| 251 |
+
except Exception as e:
|
| 252 |
+
response += (
|
| 253 |
+
f"\nChat request failed for model `{CHAT_MODEL_ID}`.\n"
|
| 254 |
+
f"Error: {e}\n"
|
| 255 |
+
)
|
| 256 |
+
yield response
|
| 257 |
+
|
| 258 |
+
# Image helpers
|
| 259 |
+
def generate_image(prompt, width, height, hf_token, *args):
|
| 260 |
+
import traceback
|
| 261 |
+
t0 = time.time()
|
| 262 |
+
prompt = (prompt or "").strip()
|
| 263 |
+
if not prompt:
|
| 264 |
+
return None, "Provide a prompt."
|
| 265 |
+
|
| 266 |
+
# 1) Cloud first (shared GPU)
|
| 267 |
+
try:
|
| 268 |
+
img = _try_cloud_text2image(prompt, hf_token)
|
| 269 |
+
if img is not None:
|
| 270 |
+
return img, f"{time.time()-t0:.2f}s"
|
| 271 |
+
except Exception as e:
|
| 272 |
+
print("Cloud image error:", e)
|
| 273 |
+
traceback.print_exc()
|
| 274 |
+
|
| 275 |
+
# 2) CPU fallback
|
| 276 |
+
try:
|
| 277 |
+
pipe = _get_img_pipe_cpu()
|
| 278 |
+
width, height = int(width), int(height)
|
| 279 |
+
out = pipe(
|
| 280 |
+
prompt=prompt,
|
| 281 |
+
num_inference_steps=IMG_STEPS,
|
| 282 |
+
guidance_scale=IMG_GUIDANCE,
|
| 283 |
+
width=width,
|
| 284 |
+
height=height,
|
| 285 |
+
)
|
| 286 |
+
img = out.images[0]
|
| 287 |
+
return img, f"{time.time()-t0:.2f}s | steps={IMG_STEPS}, g={IMG_GUIDANCE}"
|
| 288 |
+
except Exception as e:
|
| 289 |
+
print("CPU image error:", e)
|
| 290 |
+
traceback.print_exc()
|
| 291 |
+
return None, f"Generation failed: {e}"
|
| 292 |
+
|
| 293 |
+
# Gradio UI
|
| 294 |
+
with gr.Blocks(fill_height=True) as demo:
|
| 295 |
+
gr.Markdown("**ARIN 460 Final — Financial News Multi-Model**")
|
| 296 |
|
| 297 |
+
article_state = gr.State("")
|
| 298 |
+
analysis_state = gr.State({})
|
| 299 |
+
|
| 300 |
+
with gr.Sidebar():
|
| 301 |
+
login_btn = gr.LoginButton()
|
| 302 |
+
gr.Markdown("**Workflow**\n1) Input\n2) Analysis (Assignment 4)\n3) Chat\n4) Image")
|
| 303 |
+
|
| 304 |
+
with gr.Tabs():
|
| 305 |
+
with gr.Tab("Input"):
|
| 306 |
+
txt_in = gr.Textbox(lines=12, label="Article text")
|
| 307 |
+
analyze_btn = gr.Button("Analyze", variant="primary")
|
| 308 |
+
run_status = gr.Markdown()
|
| 309 |
+
|
| 310 |
+
with gr.Tab("Text Analysis"):
|
| 311 |
+
summary_box = gr.Textbox(label="Summary", lines=4, interactive=False)
|
| 312 |
+
sent_lbl = gr.Textbox(label="Sentiment", interactive=False)
|
| 313 |
+
sent_score = gr.Number(label="Sentiment score", precision=3, interactive=False)
|
| 314 |
+
fin_lbl = gr.Textbox(label="Financial Category", interactive=False)
|
| 315 |
+
fin_score = gr.Number(label="Category score", precision=3, interactive=False)
|
| 316 |
+
ta_status = gr.Markdown()
|
| 317 |
+
|
| 318 |
+
with gr.Tab("NER"):
|
| 319 |
+
ner_out = gr.Dataframe(headers=["entity", "text", "score"],
|
| 320 |
+
datatype=["str", "str", "str"], interactive=False)
|
| 321 |
+
ner_status = gr.Markdown()
|
| 322 |
+
|
| 323 |
+
with gr.Tab("Chat"):
|
| 324 |
+
chat = gr.ChatInterface(
|
| 325 |
+
respond_chat,
|
| 326 |
+
type="messages",
|
| 327 |
+
additional_inputs=[
|
| 328 |
+
article_state, analysis_state, login_btn
|
| 329 |
+
],
|
| 330 |
)
|
| 331 |
+
chat.chatbot.height = 400
|
| 332 |
|
| 333 |
+
with gr.Tab("Image"):
|
| 334 |
+
img_prompt = gr.Textbox(label="Prompt", lines=3)
|
| 335 |
+
width_slider = gr.Slider(256, 768, value=IMG_WIDTH, step=64, label="Width")
|
| 336 |
+
height_slider = gr.Slider(256, 768, value=IMG_HEIGHT, step=64, label="Height")
|
| 337 |
+
gen_btn = gr.Button("Generate Image", variant="primary")
|
| 338 |
+
image_out = gr.Image(label="Result", type="pil")
|
| 339 |
+
gen_status = gr.Markdown()
|
| 340 |
+
gen_btn.click(
|
| 341 |
+
generate_image,
|
| 342 |
+
inputs=[img_prompt, width_slider, height_slider, login_btn],
|
| 343 |
+
outputs=[image_out, gen_status]
|
| 344 |
)
|
| 345 |
|
| 346 |
+
def _analyze_all(text):
|
| 347 |
+
t0 = time.time()
|
| 348 |
+
summ = run_summary(text)
|
| 349 |
+
s_lbl, s_score, c_lbl, c_score = run_text_nlp(text)
|
| 350 |
+
ner_rows = run_ner_rows(text)
|
| 351 |
+
dt = time.time() - t0
|
| 352 |
+
analysis = {
|
| 353 |
+
"summary": summ,
|
| 354 |
+
"sentiment": s_lbl,
|
| 355 |
+
"sentiment_score": s_score,
|
| 356 |
+
"category": c_lbl,
|
| 357 |
+
"category_score": c_score,
|
| 358 |
+
"entities": ner_rows,
|
| 359 |
+
}
|
| 360 |
+
return (
|
| 361 |
+
f"Processed in **{dt:.2f}s**.",
|
| 362 |
+
summ, s_lbl, s_score, c_lbl, c_score, f"Updated at {time.strftime('%H:%M:%S')}",
|
| 363 |
+
ner_rows, f"Extracted {len(ner_rows)} entities.",
|
| 364 |
+
text, analysis
|
| 365 |
+
)
|
| 366 |
+
|
| 367 |
+
# Analyze button
|
| 368 |
+
analyze_btn.click(lambda: gr.update(value="Analyzing...", interactive=False), [], [analyze_btn]) \
|
| 369 |
+
.then(_analyze_all, inputs=[txt_in],
|
| 370 |
+
outputs=[run_status, summary_box, sent_lbl, sent_score, fin_lbl, fin_score,
|
| 371 |
+
ta_status, ner_out, ner_status, article_state, analysis_state]) \
|
| 372 |
+
.then(lambda: gr.update(value="Analyze", interactive=True), [], [analyze_btn])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 373 |
|
| 374 |
if __name__ == "__main__":
|
| 375 |
+
demo.launch()
|