Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python3 | |
| # Copyright 2018 CMU and The HuggingFace Inc. team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ Bertology: this script shows how you can explore the internals of the models in the library to: | |
| - compute the entropy of the head attentions | |
| - compute the importance of each head | |
| - prune (remove) the low importance head. | |
| Some parts of this script are adapted from the code of Michel et al. (http://arxiv.org/abs/1905.10650) | |
| which is available at https://github.com/pmichel31415/are-16-heads-really-better-than-1 | |
| """ | |
| import os | |
| import argparse | |
| import logging | |
| from datetime import timedelta, datetime | |
| from tqdm import tqdm | |
| import numpy as np | |
| import torch | |
| from torch.utils.data import DataLoader, SequentialSampler, TensorDataset, Subset | |
| from torch.utils.data.distributed import DistributedSampler | |
| from torch.nn import CrossEntropyLoss, MSELoss | |
| from pytorch_transformers import (WEIGHTS_NAME, | |
| BertConfig, BertForSequenceClassification, BertTokenizer, | |
| XLMConfig, XLMForSequenceClassification, XLMTokenizer, | |
| XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer) | |
| from run_glue import set_seed, load_and_cache_examples, ALL_MODELS, MODEL_CLASSES | |
| from utils_glue import (compute_metrics, convert_examples_to_features, | |
| output_modes, processors) | |
| logger = logging.getLogger(__name__) | |
| def entropy(p): | |
| """ Compute the entropy of a probability distribution """ | |
| plogp = p * torch.log(p) | |
| plogp[p == 0] = 0 | |
| return -plogp.sum(dim=-1) | |
| def print_2d_tensor(tensor): | |
| """ Print a 2D tensor """ | |
| logger.info("lv, h >\t" + "\t".join(f"{x + 1}" for x in range(len(tensor)))) | |
| for row in range(len(tensor)): | |
| if tensor.dtype != torch.long: | |
| logger.info(f"layer {row + 1}:\t" + "\t".join(f"{x:.5f}" for x in tensor[row].cpu().data)) | |
| else: | |
| logger.info(f"layer {row + 1}:\t" + "\t".join(f"{x:d}" for x in tensor[row].cpu().data)) | |
| def compute_heads_importance(args, model, eval_dataloader, compute_entropy=True, compute_importance=True, head_mask=None): | |
| """ This method shows how to compute: | |
| - head attention entropy | |
| - head importance scores according to http://arxiv.org/abs/1905.10650 | |
| """ | |
| # Prepare our tensors | |
| n_layers, n_heads = model.bert.config.num_hidden_layers, model.bert.config.num_attention_heads | |
| head_importance = torch.zeros(n_layers, n_heads).to(args.device) | |
| attn_entropy = torch.zeros(n_layers, n_heads).to(args.device) | |
| if head_mask is None: | |
| head_mask = torch.ones(n_layers, n_heads).to(args.device) | |
| head_mask.requires_grad_(requires_grad=True) | |
| preds = None | |
| labels = None | |
| tot_tokens = 0.0 | |
| for step, batch in enumerate(tqdm(eval_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])): | |
| batch = tuple(t.to(args.device) for t in batch) | |
| input_ids, input_mask, segment_ids, label_ids = batch | |
| # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) | |
| outputs = model(input_ids, token_type_ids=segment_ids, attention_mask=input_mask, labels=label_ids, head_mask=head_mask) | |
| loss, logits, all_attentions = outputs[0], outputs[1], outputs[-1] # Loss and logits are the first, attention the last | |
| loss.backward() # Backpropagate to populate the gradients in the head mask | |
| if compute_entropy: | |
| for layer, attn in enumerate(all_attentions): | |
| masked_entropy = entropy(attn.detach()) * input_mask.float().unsqueeze(1) | |
| attn_entropy[layer] += masked_entropy.sum(-1).sum(0).detach() | |
| if compute_importance: | |
| head_importance += head_mask.grad.abs().detach() | |
| # Also store our logits/labels if we want to compute metrics afterwards | |
| if preds is None: | |
| preds = logits.detach().cpu().numpy() | |
| labels = label_ids.detach().cpu().numpy() | |
| else: | |
| preds = np.append(preds, logits.detach().cpu().numpy(), axis=0) | |
| labels = np.append(labels, label_ids.detach().cpu().numpy(), axis=0) | |
| tot_tokens += input_mask.float().detach().sum().data | |
| # Normalize | |
| attn_entropy /= tot_tokens | |
| head_importance /= tot_tokens | |
| # Layerwise importance normalization | |
| if not args.dont_normalize_importance_by_layer: | |
| exponent = 2 | |
| norm_by_layer = torch.pow(torch.pow(head_importance, exponent).sum(-1), 1/exponent) | |
| head_importance /= norm_by_layer.unsqueeze(-1) + 1e-20 | |
| if not args.dont_normalize_global_importance: | |
| head_importance = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) | |
| # Print/save matrices | |
| np.save(os.path.join(args.output_dir, 'attn_entropy.npy'), attn_entropy.detach().cpu().numpy()) | |
| np.save(os.path.join(args.output_dir, 'head_importance.npy'), head_importance.detach().cpu().numpy()) | |
| logger.info("Attention entropies") | |
| print_2d_tensor(attn_entropy) | |
| logger.info("Head importance scores") | |
| print_2d_tensor(head_importance) | |
| logger.info("Head ranked by importance scores") | |
| head_ranks = torch.zeros(head_importance.numel(), dtype=torch.long, device=args.device) | |
| head_ranks[head_importance.view(-1).sort(descending=True)[1]] = torch.arange(head_importance.numel(), device=args.device) | |
| head_ranks = head_ranks.view_as(head_importance) | |
| print_2d_tensor(head_ranks) | |
| return attn_entropy, head_importance, preds, labels | |
| def mask_heads(args, model, eval_dataloader): | |
| """ This method shows how to mask head (set some heads to zero), to test the effect on the network, | |
| based on the head importance scores, as described in Michel et al. (http://arxiv.org/abs/1905.10650) | |
| """ | |
| _, head_importance, preds, labels = compute_heads_importance(args, model, eval_dataloader, compute_entropy=False) | |
| preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds) | |
| original_score = compute_metrics(args.task_name, preds, labels)[args.metric_name] | |
| logger.info("Pruning: original score: %f, threshold: %f", original_score, original_score * args.masking_threshold) | |
| new_head_mask = torch.ones_like(head_importance) | |
| num_to_mask = max(1, int(new_head_mask.numel() * args.masking_amount)) | |
| current_score = original_score | |
| while current_score >= original_score * args.masking_threshold: | |
| head_mask = new_head_mask.clone() # save current head mask | |
| # heads from least important to most - keep only not-masked heads | |
| head_importance[head_mask == 0.0] = float('Inf') | |
| current_heads_to_mask = head_importance.view(-1).sort()[1] | |
| if len(current_heads_to_mask) <= num_to_mask: | |
| break | |
| # mask heads | |
| current_heads_to_mask = current_heads_to_mask[:num_to_mask] | |
| logger.info("Heads to mask: %s", str(current_heads_to_mask.tolist())) | |
| new_head_mask = new_head_mask.view(-1) | |
| new_head_mask[current_heads_to_mask] = 0.0 | |
| new_head_mask = new_head_mask.view_as(head_mask) | |
| print_2d_tensor(new_head_mask) | |
| # Compute metric and head importance again | |
| _, head_importance, preds, labels = compute_heads_importance(args, model, eval_dataloader, compute_entropy=False, head_mask=new_head_mask) | |
| preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds) | |
| current_score = compute_metrics(args.task_name, preds, labels)[args.metric_name] | |
| logger.info("Masking: current score: %f, remaning heads %d (%.1f percents)", current_score, new_head_mask.sum(), new_head_mask.sum()/new_head_mask.numel() * 100) | |
| logger.info("Final head mask") | |
| print_2d_tensor(head_mask) | |
| np.save(os.path.join(args.output_dir, 'head_mask.npy'), head_mask.detach().cpu().numpy()) | |
| return head_mask | |
| def prune_heads(args, model, eval_dataloader, head_mask): | |
| """ This method shows how to prune head (remove heads weights) based on | |
| the head importance scores as described in Michel et al. (http://arxiv.org/abs/1905.10650) | |
| """ | |
| # Try pruning and test time speedup | |
| # Pruning is like masking but we actually remove the masked weights | |
| before_time = datetime.now() | |
| _, _, preds, labels = compute_heads_importance(args, model, eval_dataloader, | |
| compute_entropy=False, compute_importance=False, head_mask=head_mask) | |
| preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds) | |
| score_masking = compute_metrics(args.task_name, preds, labels)[args.metric_name] | |
| original_time = datetime.now() - before_time | |
| original_num_params = sum(p.numel() for p in model.parameters()) | |
| heads_to_prune = dict((layer, (1 - head_mask[layer].long()).nonzero().tolist()) for layer in range(len(head_mask))) | |
| assert sum(len(h) for h in heads_to_prune.values()) == (1 - head_mask.long()).sum().item() | |
| model.prune_heads(heads_to_prune) | |
| pruned_num_params = sum(p.numel() for p in model.parameters()) | |
| before_time = datetime.now() | |
| _, _, preds, labels = compute_heads_importance(args, model, eval_dataloader, | |
| compute_entropy=False, compute_importance=False, head_mask=None) | |
| preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds) | |
| score_pruning = compute_metrics(args.task_name, preds, labels)[args.metric_name] | |
| new_time = datetime.now() - before_time | |
| logger.info("Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)", original_num_params, pruned_num_params, pruned_num_params/original_num_params * 100) | |
| logger.info("Pruning: score with masking: %f score with pruning: %f", score_masking, score_pruning) | |
| logger.info("Pruning: speed ratio (new timing / original timing): %f percents", original_time/new_time * 100) | |
| def main(): | |
| parser = argparse.ArgumentParser() | |
| ## Required parameters | |
| parser.add_argument("--data_dir", default=None, type=str, required=True, | |
| help="The input data dir. Should contain the .tsv files (or other data files) for the task.") | |
| parser.add_argument("--model_name_or_path", default=None, type=str, required=True, | |
| help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join( | |
| ALL_MODELS)) | |
| parser.add_argument("--task_name", default=None, type=str, required=True, | |
| help="The name of the task to train selected in the list: " + ", ".join(processors.keys())) | |
| parser.add_argument("--output_dir", default=None, type=str, required=True, | |
| help="The output directory where the model predictions and checkpoints will be written.") | |
| ## Other parameters | |
| parser.add_argument("--config_name", default="", type=str, | |
| help="Pretrained config name or path if not the same as model_name_or_path") | |
| parser.add_argument("--tokenizer_name", default="", type=str, | |
| help="Pretrained tokenizer name or path if not the same as model_name_or_path") | |
| parser.add_argument("--cache_dir", default="", type=str, | |
| help="Where do you want to store the pre-trained models downloaded from s3") | |
| parser.add_argument("--data_subset", type=int, default=-1, | |
| help="If > 0: limit the data to a subset of data_subset instances.") | |
| parser.add_argument("--overwrite_output_dir", action='store_true', | |
| help="Whether to overwrite data in output directory") | |
| parser.add_argument("--dont_normalize_importance_by_layer", action='store_true', | |
| help="Don't normalize importance score by layers") | |
| parser.add_argument("--dont_normalize_global_importance", action='store_true', | |
| help="Don't normalize all importance scores between 0 and 1") | |
| parser.add_argument("--try_masking", action='store_true', | |
| help="Whether to try to mask head until a threshold of accuracy.") | |
| parser.add_argument("--masking_threshold", default=0.9, type=float, | |
| help="masking threshold in term of metrics (stop masking when metric < threshold * original metric value).") | |
| parser.add_argument("--masking_amount", default=0.1, type=float, | |
| help="Amount to heads to masking at each masking step.") | |
| parser.add_argument("--metric_name", default="acc", type=str, | |
| help="Metric to use for head masking.") | |
| parser.add_argument("--max_seq_length", default=128, type=int, | |
| help="The maximum total input sequence length after WordPiece tokenization. \n" | |
| "Sequences longer than this will be truncated, sequences shorter padded.") | |
| parser.add_argument("--batch_size", default=1, type=int, help="Batch size.") | |
| parser.add_argument("--seed", type=int, default=42) | |
| parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") | |
| parser.add_argument("--no_cuda", action='store_true', help="Whether not to use CUDA when available") | |
| parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.") | |
| parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.") | |
| args = parser.parse_args() | |
| if args.server_ip and args.server_port: | |
| # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script | |
| import ptvsd | |
| print("Waiting for debugger attach") | |
| ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) | |
| ptvsd.wait_for_attach() | |
| # Setup devices and distributed training | |
| if args.local_rank == -1 or args.no_cuda: | |
| args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") | |
| args.n_gpu = torch.cuda.device_count() | |
| else: | |
| torch.cuda.set_device(args.local_rank) | |
| args.device = torch.device("cuda", args.local_rank) | |
| args.n_gpu = 1 | |
| torch.distributed.init_process_group(backend='nccl') # Initializes the distributed backend | |
| # Setup logging | |
| logging.basicConfig(level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN) | |
| logger.info("device: {} n_gpu: {}, distributed: {}".format(args.device, args.n_gpu, bool(args.local_rank != -1))) | |
| # Set seeds | |
| set_seed(args) | |
| # Prepare GLUE task | |
| args.task_name = args.task_name.lower() | |
| if args.task_name not in processors: | |
| raise ValueError("Task not found: %s" % (args.task_name)) | |
| processor = processors[args.task_name]() | |
| args.output_mode = output_modes[args.task_name] | |
| label_list = processor.get_labels() | |
| num_labels = len(label_list) | |
| # Load pretrained model and tokenizer | |
| if args.local_rank not in [-1, 0]: | |
| torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab | |
| args.model_type = "" | |
| for key in MODEL_CLASSES: | |
| if key in args.model_name_or_path.lower(): | |
| args.model_type = key # take the first match in model types | |
| break | |
| config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] | |
| config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path, | |
| num_labels=num_labels, finetuning_task=args.task_name, | |
| output_attentions=True) | |
| tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path) | |
| model = model_class.from_pretrained(args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path), config=config) | |
| if args.local_rank == 0: | |
| torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab | |
| # Distributed and parallel training | |
| model.to(args.device) | |
| if args.local_rank != -1: | |
| model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], | |
| output_device=args.local_rank, | |
| find_unused_parameters=True) | |
| elif args.n_gpu > 1: | |
| model = torch.nn.DataParallel(model) | |
| # Print/save training arguments | |
| torch.save(args, os.path.join(args.output_dir, 'run_args.bin')) | |
| logger.info("Training/evaluation parameters %s", args) | |
| # Prepare dataset for the GLUE task | |
| eval_data = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=True) | |
| if args.data_subset > 0: | |
| eval_data = Subset(eval_data, list(range(min(args.data_subset, len(eval_data))))) | |
| eval_sampler = SequentialSampler(eval_data) if args.local_rank == -1 else DistributedSampler(eval_data) | |
| eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.batch_size) | |
| # Compute head entropy and importance score | |
| compute_heads_importance(args, model, eval_dataloader) | |
| # Try head masking (set heads to zero until the score goes under a threshole) | |
| # and head pruning (remove masked heads and see the effect on the network) | |
| if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: | |
| head_mask = mask_heads(args, model, eval_dataloader) | |
| prune_heads(args, model, eval_dataloader, head_mask) | |
| if __name__ == '__main__': | |
| main() | |