Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. | |
| # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ BERT multiple choice fine-tuning: utilities to work with multiple choice tasks of reading comprehension """ | |
| from __future__ import absolute_import, division, print_function | |
| import logging | |
| import os | |
| import sys | |
| from io import open | |
| import json | |
| import csv | |
| import glob | |
| import tqdm | |
| logger = logging.getLogger(__name__) | |
| class InputExample(object): | |
| """A single training/test example for multiple choice""" | |
| def __init__(self, example_id, question, contexts, endings, label=None): | |
| """Constructs a InputExample. | |
| Args: | |
| example_id: Unique id for the example. | |
| contexts: list of str. The untokenized text of the first sequence (context of corresponding question). | |
| question: string. The untokenized text of the second sequence (qustion). | |
| endings: list of str. multiple choice's options. Its length must be equal to contexts' length. | |
| label: (Optional) string. The label of the example. This should be | |
| specified for train and dev examples, but not for test examples. | |
| """ | |
| self.example_id = example_id | |
| self.question = question | |
| self.contexts = contexts | |
| self.endings = endings | |
| self.label = label | |
| class InputFeatures(object): | |
| def __init__(self, | |
| example_id, | |
| choices_features, | |
| label | |
| ): | |
| self.example_id = example_id | |
| self.choices_features = [ | |
| { | |
| 'input_ids': input_ids, | |
| 'input_mask': input_mask, | |
| 'segment_ids': segment_ids | |
| } | |
| for _, input_ids, input_mask, segment_ids in choices_features | |
| ] | |
| self.label = label | |
| class DataProcessor(object): | |
| """Base class for data converters for multiple choice data sets.""" | |
| def get_train_examples(self, data_dir): | |
| """Gets a collection of `InputExample`s for the train set.""" | |
| raise NotImplementedError() | |
| def get_dev_examples(self, data_dir): | |
| """Gets a collection of `InputExample`s for the dev set.""" | |
| raise NotImplementedError() | |
| def get_test_examples(self, data_dir): | |
| """Gets a collection of `InputExample`s for the test set.""" | |
| raise NotImplementedError() | |
| def get_labels(self): | |
| """Gets the list of labels for this data set.""" | |
| raise NotImplementedError() | |
| class RaceProcessor(DataProcessor): | |
| """Processor for the RACE data set.""" | |
| def get_train_examples(self, data_dir): | |
| """See base class.""" | |
| logger.info("LOOKING AT {} train".format(data_dir)) | |
| high = os.path.join(data_dir, 'train/high') | |
| middle = os.path.join(data_dir, 'train/middle') | |
| high = self._read_txt(high) | |
| middle = self._read_txt(middle) | |
| return self._create_examples(high + middle, 'train') | |
| def get_dev_examples(self, data_dir): | |
| """See base class.""" | |
| logger.info("LOOKING AT {} dev".format(data_dir)) | |
| high = os.path.join(data_dir, 'dev/high') | |
| middle = os.path.join(data_dir, 'dev/middle') | |
| high = self._read_txt(high) | |
| middle = self._read_txt(middle) | |
| return self._create_examples(high + middle, 'dev') | |
| def get_test_examples(self, data_dir): | |
| """See base class.""" | |
| logger.info("LOOKING AT {} test".format(data_dir)) | |
| high = os.path.join(data_dir, 'test/high') | |
| middle = os.path.join(data_dir, 'test/middle') | |
| high = self._read_txt(high) | |
| middle = self._read_txt(middle) | |
| return self._create_examples(high + middle, 'test') | |
| def get_labels(self): | |
| """See base class.""" | |
| return ["0", "1", "2", "3"] | |
| def _read_txt(self, input_dir): | |
| lines = [] | |
| files = glob.glob(input_dir + "/*txt") | |
| for file in tqdm.tqdm(files, desc="read files"): | |
| with open(file, 'r', encoding='utf-8') as fin: | |
| data_raw = json.load(fin) | |
| data_raw["race_id"] = file | |
| lines.append(data_raw) | |
| return lines | |
| def _create_examples(self, lines, set_type): | |
| """Creates examples for the training and dev sets.""" | |
| examples = [] | |
| for (_, data_raw) in enumerate(lines): | |
| race_id = "%s-%s" % (set_type, data_raw["race_id"]) | |
| article = data_raw["article"] | |
| for i in range(len(data_raw["answers"])): | |
| truth = str(ord(data_raw['answers'][i]) - ord('A')) | |
| question = data_raw['questions'][i] | |
| options = data_raw['options'][i] | |
| examples.append( | |
| InputExample( | |
| example_id=race_id, | |
| question=question, | |
| contexts=[article, article, article, article], # this is not efficient but convenient | |
| endings=[options[0], options[1], options[2], options[3]], | |
| label=truth)) | |
| return examples | |
| class SwagProcessor(DataProcessor): | |
| """Processor for the SWAG data set.""" | |
| def get_train_examples(self, data_dir): | |
| """See base class.""" | |
| logger.info("LOOKING AT {} train".format(data_dir)) | |
| return self._create_examples(self._read_csv(os.path.join(data_dir, "train.csv")), "train") | |
| def get_dev_examples(self, data_dir): | |
| """See base class.""" | |
| logger.info("LOOKING AT {} dev".format(data_dir)) | |
| return self._create_examples(self._read_csv(os.path.join(data_dir, "val.csv")), "dev") | |
| def get_test_examples(self, data_dir): | |
| """See base class.""" | |
| logger.info("LOOKING AT {} dev".format(data_dir)) | |
| raise ValueError( | |
| "For swag testing, the input file does not contain a label column. It can not be tested in current code" | |
| "setting!" | |
| ) | |
| return self._create_examples(self._read_csv(os.path.join(data_dir, "test.csv")), "test") | |
| def get_labels(self): | |
| """See base class.""" | |
| return ["0", "1", "2", "3"] | |
| def _read_csv(self, input_file): | |
| with open(input_file, 'r', encoding='utf-8') as f: | |
| reader = csv.reader(f) | |
| lines = [] | |
| for line in reader: | |
| if sys.version_info[0] == 2: | |
| line = list(unicode(cell, 'utf-8') for cell in line) | |
| lines.append(line) | |
| return lines | |
| def _create_examples(self, lines, type): | |
| """Creates examples for the training and dev sets.""" | |
| if type == "train" and lines[0][-1] != 'label': | |
| raise ValueError( | |
| "For training, the input file must contain a label column." | |
| ) | |
| examples = [ | |
| InputExample( | |
| example_id=line[2], | |
| question=line[5], # in the swag dataset, the | |
| # common beginning of each | |
| # choice is stored in "sent2". | |
| contexts = [line[4], line[4], line[4], line[4]], | |
| endings = [line[7], line[8], line[9], line[10]], | |
| label=line[11] | |
| ) for line in lines[1:] # we skip the line with the column names | |
| ] | |
| return examples | |
| class ArcProcessor(DataProcessor): | |
| """Processor for the ARC data set (request from allennlp).""" | |
| def get_train_examples(self, data_dir): | |
| """See base class.""" | |
| logger.info("LOOKING AT {} train".format(data_dir)) | |
| return self._create_examples(self._read_json(os.path.join(data_dir, "train.jsonl")), "train") | |
| def get_dev_examples(self, data_dir): | |
| """See base class.""" | |
| logger.info("LOOKING AT {} dev".format(data_dir)) | |
| return self._create_examples(self._read_json(os.path.join(data_dir, "dev.jsonl")), "dev") | |
| def get_test_examples(self, data_dir): | |
| logger.info("LOOKING AT {} test".format(data_dir)) | |
| return self._create_examples(self._read_json(os.path.join(data_dir, "test.jsonl")), "test") | |
| def get_labels(self): | |
| """See base class.""" | |
| return ["0", "1", "2", "3"] | |
| def _read_json(self, input_file): | |
| with open(input_file, 'r', encoding='utf-8') as fin: | |
| lines = fin.readlines() | |
| return lines | |
| def _create_examples(self, lines, type): | |
| """Creates examples for the training and dev sets.""" | |
| #There are two types of labels. They should be normalized | |
| def normalize(truth): | |
| if truth in "ABCD": | |
| return ord(truth) - ord("A") | |
| elif truth in "1234": | |
| return int(truth) - 1 | |
| else: | |
| logger.info("truth ERROR! %s", str(truth)) | |
| return None | |
| examples = [] | |
| three_choice = 0 | |
| four_choice = 0 | |
| five_choice = 0 | |
| other_choices = 0 | |
| # we deleted example which has more than or less than four choices | |
| for line in tqdm.tqdm(lines, desc="read arc data"): | |
| data_raw = json.loads(line.strip("\n")) | |
| if len(data_raw["question"]["choices"]) == 3: | |
| three_choice += 1 | |
| continue | |
| elif len(data_raw["question"]["choices"]) == 5: | |
| five_choice += 1 | |
| continue | |
| elif len(data_raw["question"]["choices"]) != 4: | |
| other_choices += 1 | |
| continue | |
| four_choice += 1 | |
| truth = str(normalize(data_raw["answerKey"])) | |
| assert truth != "None" | |
| question_choices = data_raw["question"] | |
| question = question_choices["stem"] | |
| id = data_raw["id"] | |
| options = question_choices["choices"] | |
| if len(options) == 4: | |
| examples.append( | |
| InputExample( | |
| example_id = id, | |
| question=question, | |
| contexts=[options[0]["para"].replace("_", ""), options[1]["para"].replace("_", ""), | |
| options[2]["para"].replace("_", ""), options[3]["para"].replace("_", "")], | |
| endings=[options[0]["text"], options[1]["text"], options[2]["text"], options[3]["text"]], | |
| label=truth)) | |
| if type == "train": | |
| assert len(examples) > 1 | |
| assert examples[0].label is not None | |
| logger.info("len examples: %s}", str(len(examples))) | |
| logger.info("Three choices: %s", str(three_choice)) | |
| logger.info("Five choices: %s", str(five_choice)) | |
| logger.info("Other choices: %s", str(other_choices)) | |
| logger.info("four choices: %s", str(four_choice)) | |
| return examples | |
| def convert_examples_to_features(examples, label_list, max_seq_length, | |
| tokenizer, | |
| cls_token_at_end=False, | |
| cls_token='[CLS]', | |
| cls_token_segment_id=1, | |
| sep_token='[SEP]', | |
| sequence_a_segment_id=0, | |
| sequence_b_segment_id=1, | |
| sep_token_extra=False, | |
| pad_token_segment_id=0, | |
| pad_on_left=False, | |
| pad_token=0, | |
| mask_padding_with_zero=True): | |
| """ Loads a data file into a list of `InputBatch`s | |
| `cls_token_at_end` define the location of the CLS token: | |
| - False (Default, BERT/XLM pattern): [CLS] + A + [SEP] + B + [SEP] | |
| - True (XLNet/GPT pattern): A + [SEP] + B + [SEP] + [CLS] | |
| `cls_token_segment_id` define the segment id associated to the CLS token (0 for BERT, 2 for XLNet) | |
| """ | |
| label_map = {label : i for i, label in enumerate(label_list)} | |
| features = [] | |
| for (ex_index, example) in tqdm.tqdm(enumerate(examples), desc="convert examples to features"): | |
| if ex_index % 10000 == 0: | |
| logger.info("Writing example %d of %d" % (ex_index, len(examples))) | |
| choices_features = [] | |
| for ending_idx, (context, ending) in enumerate(zip(example.contexts, example.endings)): | |
| tokens_a = tokenizer.tokenize(context) | |
| tokens_b = None | |
| if example.question.find("_") != -1: | |
| #this is for cloze question | |
| tokens_b = tokenizer.tokenize(example.question.replace("_", ending)) | |
| else: | |
| tokens_b = tokenizer.tokenize(example.question + " " + ending) | |
| # you can add seq token between quesiotn and ending. This does not make too much difference. | |
| # tokens_b = tokenizer.tokenize(example.question) | |
| # tokens_b += [sep_token] | |
| # if sep_token_extra: | |
| # tokens_b += [sep_token] | |
| # tokens_b += tokenizer.tokenize(ending) | |
| special_tokens_count = 4 if sep_token_extra else 3 | |
| _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - special_tokens_count) | |
| # The convention in BERT is: | |
| # (a) For sequence pairs: | |
| # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] | |
| # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 | |
| # (b) For single sequences: | |
| # tokens: [CLS] the dog is hairy . [SEP] | |
| # type_ids: 0 0 0 0 0 0 0 | |
| # | |
| # Where "type_ids" are used to indicate whether this is the first | |
| # sequence or the second sequence. The embedding vectors for `type=0` and | |
| # `type=1` were learned during pre-training and are added to the wordpiece | |
| # embedding vector (and position vector). This is not *strictly* necessary | |
| # since the [SEP] token unambiguously separates the sequences, but it makes | |
| # it easier for the model to learn the concept of sequences. | |
| # | |
| # For classification tasks, the first vector (corresponding to [CLS]) is | |
| # used as as the "sentence vector". Note that this only makes sense because | |
| # the entire model is fine-tuned. | |
| tokens = tokens_a + [sep_token] | |
| if sep_token_extra: | |
| # roberta uses an extra separator b/w pairs of sentences | |
| tokens += [sep_token] | |
| segment_ids = [sequence_a_segment_id] * len(tokens) | |
| if tokens_b: | |
| tokens += tokens_b + [sep_token] | |
| segment_ids += [sequence_b_segment_id] * (len(tokens_b) + 1) | |
| if cls_token_at_end: | |
| tokens = tokens + [cls_token] | |
| segment_ids = segment_ids + [cls_token_segment_id] | |
| else: | |
| tokens = [cls_token] + tokens | |
| segment_ids = [cls_token_segment_id] + segment_ids | |
| input_ids = tokenizer.convert_tokens_to_ids(tokens) | |
| # The mask has 1 for real tokens and 0 for padding tokens. Only real | |
| # tokens are attended to. | |
| input_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) | |
| # Zero-pad up to the sequence length. | |
| padding_length = max_seq_length - len(input_ids) | |
| if pad_on_left: | |
| input_ids = ([pad_token] * padding_length) + input_ids | |
| input_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask | |
| segment_ids = ([pad_token_segment_id] * padding_length) + segment_ids | |
| else: | |
| input_ids = input_ids + ([pad_token] * padding_length) | |
| input_mask = input_mask + ([0 if mask_padding_with_zero else 1] * padding_length) | |
| segment_ids = segment_ids + ([pad_token_segment_id] * padding_length) | |
| assert len(input_ids) == max_seq_length | |
| assert len(input_mask) == max_seq_length | |
| assert len(segment_ids) == max_seq_length | |
| choices_features.append((tokens, input_ids, input_mask, segment_ids)) | |
| label = label_map[example.label] | |
| if ex_index < 2: | |
| logger.info("*** Example ***") | |
| logger.info("race_id: {}".format(example.example_id)) | |
| for choice_idx, (tokens, input_ids, input_mask, segment_ids) in enumerate(choices_features): | |
| logger.info("choice: {}".format(choice_idx)) | |
| logger.info("tokens: {}".format(' '.join(tokens))) | |
| logger.info("input_ids: {}".format(' '.join(map(str, input_ids)))) | |
| logger.info("input_mask: {}".format(' '.join(map(str, input_mask)))) | |
| logger.info("segment_ids: {}".format(' '.join(map(str, segment_ids)))) | |
| logger.info("label: {}".format(label)) | |
| features.append( | |
| InputFeatures( | |
| example_id = example.example_id, | |
| choices_features = choices_features, | |
| label = label | |
| ) | |
| ) | |
| return features | |
| def _truncate_seq_pair(tokens_a, tokens_b, max_length): | |
| """Truncates a sequence pair in place to the maximum length.""" | |
| # This is a simple heuristic which will always truncate the longer sequence | |
| # one token at a time. This makes more sense than truncating an equal percent | |
| # of tokens from each, since if one sequence is very short then each token | |
| # that's truncated likely contains more information than a longer sequence. | |
| # However, since we'd better not to remove tokens of options and questions, you can choose to use a bigger | |
| # length or only pop from context | |
| while True: | |
| total_length = len(tokens_a) + len(tokens_b) | |
| if total_length <= max_length: | |
| break | |
| if len(tokens_a) > len(tokens_b): | |
| tokens_a.pop() | |
| else: | |
| logger.info('Attention! you are removing from token_b (swag task is ok). ' | |
| 'If you are training ARC and RACE (you are poping question + options), ' | |
| 'you need to try to use a bigger max seq length!') | |
| tokens_b.pop() | |
| processors = { | |
| "race": RaceProcessor, | |
| "swag": SwagProcessor, | |
| "arc": ArcProcessor | |
| } | |
| GLUE_TASKS_NUM_LABELS = { | |
| "race", 4, | |
| "swag", 4, | |
| "arc", 4 | |
| } | |