Spaces:
Sleeping
Sleeping
| import os | |
| from typing import List | |
| from chainlit.types import AskFileResponse | |
| from aimakerspace.text_utils import CharacterTextSplitter, TextFileLoader, PDFLoader | |
| from aimakerspace.openai_utils.prompts import ( | |
| UserRolePrompt, | |
| SystemRolePrompt, | |
| AssistantRolePrompt, | |
| ) | |
| from aimakerspace.openai_utils.embedding import EmbeddingModel | |
| from aimakerspace.vectordatabase import VectorDatabase | |
| from aimakerspace.openai_utils.chatmodel import ChatOpenAI | |
| import chainlit as cl | |
| system_template = """\ | |
| Use the following context to answer a users question. If you cannot find the answer in the context, say you don't know the answer.""" | |
| system_role_prompt = SystemRolePrompt(system_template) | |
| user_prompt_template = """\ | |
| Context: | |
| {context} | |
| Question: | |
| {question} | |
| """ | |
| user_role_prompt = UserRolePrompt(user_prompt_template) | |
| class RetrievalAugmentedQAPipeline: | |
| def __init__(self, llm: ChatOpenAI(), vector_db_retriever: VectorDatabase) -> None: | |
| self.llm = llm | |
| self.vector_db_retriever = vector_db_retriever | |
| async def arun_pipeline(self, user_query: str): | |
| context_list = self.vector_db_retriever.search_by_text(user_query, k=4) | |
| context_prompt = "" | |
| for context in context_list: | |
| context_prompt += context[0] + "\n" | |
| print(f"Context: {context_prompt}") | |
| formatted_system_prompt = system_role_prompt.create_message() | |
| formatted_user_prompt = user_role_prompt.create_message(question=user_query, context=context_prompt) | |
| async def generate_response(): | |
| async for chunk in self.llm.astream([formatted_system_prompt, formatted_user_prompt]): | |
| yield chunk | |
| return {"response": generate_response(), "context": context_list} | |
| text_splitter = CharacterTextSplitter() | |
| def process_file(file: AskFileResponse): | |
| import tempfile | |
| import shutil | |
| print(f"Processing file: {file.name}") | |
| # Create a temporary file with the correct extension | |
| suffix = f".{file.name.split('.')[-1]}" | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as temp_file: | |
| # Copy the uploaded file content to the temporary file | |
| shutil.copyfile(file.path, temp_file.name) | |
| print(f"Created temporary file at: {temp_file.name}") | |
| # Create appropriate loader | |
| if file.name.lower().endswith('.pdf'): | |
| loader = PDFLoader(temp_file.name) | |
| else: | |
| loader = TextFileLoader(temp_file.name) | |
| try: | |
| # Load and process the documents | |
| documents = loader.load_documents() | |
| texts = text_splitter.split_texts(documents) | |
| return texts | |
| finally: | |
| # Clean up the temporary file | |
| try: | |
| os.unlink(temp_file.name) | |
| except Exception as e: | |
| print(f"Error cleaning up temporary file: {e}") | |
| async def on_chat_start(): | |
| files = None | |
| # Wait for the user to upload a file | |
| while files == None: | |
| files = await cl.AskFileMessage( | |
| content="Please upload a Text or PDF file to begin!", | |
| accept=["text/plain", "application/pdf"], | |
| max_size_mb=2, | |
| timeout=180, | |
| ).send() | |
| file = files[0] | |
| msg = cl.Message( | |
| content=f"Processing `{file.name}`..." | |
| ) | |
| await msg.send() | |
| # load the file | |
| texts = process_file(file) | |
| print(f"Processing {len(texts)} text chunks") | |
| # Create a dict vector store | |
| vector_db = VectorDatabase() | |
| vector_db = await vector_db.abuild_from_list(texts) | |
| chat_openai = ChatOpenAI() | |
| # Create a chain | |
| retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipeline( | |
| vector_db_retriever=vector_db, | |
| llm=chat_openai | |
| ) | |
| # Let the user know that the system is ready | |
| msg.content = f"Processing `{file.name}` done. You can now ask questions!" | |
| await msg.update() | |
| cl.user_session.set("chain", retrieval_augmented_qa_pipeline) | |
| async def main(message): | |
| chain = cl.user_session.get("chain") | |
| msg = cl.Message(content="") | |
| result = await chain.arun_pipeline(message.content) | |
| async for stream_resp in result["response"]: | |
| await msg.stream_token(stream_resp) | |
| await msg.send() |