Spaces:
Sleeping
Sleeping
Sagar Sanghani
commited on
Commit
·
73f74f6
1
Parent(s):
960e946
made google work, added llama
Browse files
model.py
CHANGED
|
@@ -2,11 +2,11 @@ from dotenv import load_dotenv, find_dotenv
|
|
| 2 |
import os
|
| 3 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 4 |
from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace
|
| 5 |
-
from langchain_community.tools import
|
| 6 |
from langchain_tavily import TavilySearch
|
| 7 |
from langchain_community.document_loaders import AsyncHtmlLoader
|
| 8 |
from langchain.tools import tool
|
| 9 |
-
from langchain.prompts import ChatPromptTemplate
|
| 10 |
from langchain.agents import AgentExecutor, create_tool_calling_agent
|
| 11 |
from csv_cache import CSVSCache
|
| 12 |
from prompt import get_prompt
|
|
@@ -64,15 +64,18 @@ class LLMProvider(Enum):
|
|
| 64 |
corresponding environment variable names for API keys.
|
| 65 |
"""
|
| 66 |
HUGGINGFACE = ("HuggingFace", "HF_TOKEN")
|
|
|
|
| 67 |
GOOGLE_GEMINI = ("Google Gemini", "GOOGLE_API_KEY")
|
| 68 |
|
| 69 |
class Model:
|
| 70 |
-
def __init__(self):
|
| 71 |
-
|
| 72 |
-
self.token = os.getenv("HF_TOKEN")
|
| 73 |
self.system_prompt = get_prompt()
|
| 74 |
print(f"system_prompt: {self.system_prompt}")
|
|
|
|
| 75 |
self.agent_executor = self.setup_model()
|
|
|
|
|
|
|
| 76 |
|
| 77 |
def get_answer(self, question: str) -> str:
|
| 78 |
try:
|
|
@@ -107,10 +110,19 @@ class Model:
|
|
| 107 |
if provider == LLMProvider.HUGGINGFACE:
|
| 108 |
llm = HuggingFaceEndpoint(
|
| 109 |
repo_id="Qwen/Qwen3-Next-80B-A3B-Thinking",
|
| 110 |
-
huggingfacehub_api_token=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
temperature=0
|
| 112 |
)
|
| 113 |
return ChatHuggingFace(llm=llm).bind_tools(tools)
|
|
|
|
| 114 |
|
| 115 |
|
| 116 |
elif provider == LLMProvider.GOOGLE_GEMINI:
|
|
@@ -118,14 +130,17 @@ class Model:
|
|
| 118 |
model="gemini-2.5-flash",
|
| 119 |
temperature=0
|
| 120 |
)
|
| 121 |
-
#
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
|
|
|
|
|
|
|
|
|
| 129 |
|
| 130 |
else:
|
| 131 |
raise ValueError(f"Unknown LLM provider: {provider}")
|
|
@@ -148,14 +163,15 @@ class Model:
|
|
| 148 |
tavily_search_tool,
|
| 149 |
arxiv_search,
|
| 150 |
]
|
| 151 |
-
chat = self.get_chat_with_tools(
|
| 152 |
|
| 153 |
# Create the ReAct prompt template
|
| 154 |
prompt = ChatPromptTemplate.from_messages(
|
| 155 |
[
|
| 156 |
("system", self.system_prompt), # Use the new, detailed ReAct prompt
|
| 157 |
-
("placeholder", "{agent_scratchpad}"),
|
| 158 |
("human", "{input}"),
|
|
|
|
|
|
|
| 159 |
]
|
| 160 |
)
|
| 161 |
|
|
@@ -193,10 +209,14 @@ def update_mode(model):
|
|
| 193 |
|
| 194 |
def main():
|
| 195 |
load_dotenv(find_dotenv())
|
| 196 |
-
|
|
|
|
|
|
|
| 197 |
#update_mode(model)
|
| 198 |
-
|
| 199 |
-
|
|
|
|
|
|
|
| 200 |
|
| 201 |
if __name__ == "__main__":
|
| 202 |
main()
|
|
|
|
| 2 |
import os
|
| 3 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 4 |
from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace
|
| 5 |
+
from langchain_community.tools.google_search.tool import GoogleSearchAPIWrapper
|
| 6 |
from langchain_tavily import TavilySearch
|
| 7 |
from langchain_community.document_loaders import AsyncHtmlLoader
|
| 8 |
from langchain.tools import tool
|
| 9 |
+
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
| 10 |
from langchain.agents import AgentExecutor, create_tool_calling_agent
|
| 11 |
from csv_cache import CSVSCache
|
| 12 |
from prompt import get_prompt
|
|
|
|
| 64 |
corresponding environment variable names for API keys.
|
| 65 |
"""
|
| 66 |
HUGGINGFACE = ("HuggingFace", "HF_TOKEN")
|
| 67 |
+
HUGGINGFACE_LLAMA = ("HUGGINGFACE_LLAMA", "HF_TOKEN")
|
| 68 |
GOOGLE_GEMINI = ("Google Gemini", "GOOGLE_API_KEY")
|
| 69 |
|
| 70 |
class Model:
|
| 71 |
+
def __init__(self, provider: LLMProvider = LLMProvider.HUGGINGFACE):
|
| 72 |
+
load_dotenv(find_dotenv())
|
|
|
|
| 73 |
self.system_prompt = get_prompt()
|
| 74 |
print(f"system_prompt: {self.system_prompt}")
|
| 75 |
+
self.provider = provider
|
| 76 |
self.agent_executor = self.setup_model()
|
| 77 |
+
|
| 78 |
+
|
| 79 |
|
| 80 |
def get_answer(self, question: str) -> str:
|
| 81 |
try:
|
|
|
|
| 110 |
if provider == LLMProvider.HUGGINGFACE:
|
| 111 |
llm = HuggingFaceEndpoint(
|
| 112 |
repo_id="Qwen/Qwen3-Next-80B-A3B-Thinking",
|
| 113 |
+
huggingfacehub_api_token=api_token,
|
| 114 |
+
temperature=0
|
| 115 |
+
)
|
| 116 |
+
return ChatHuggingFace(llm=llm).bind_tools(tools)
|
| 117 |
+
|
| 118 |
+
if provider == LLMProvider.HUGGINGFACE_LLAMA:
|
| 119 |
+
llm = HuggingFaceEndpoint(
|
| 120 |
+
repo_id="meta-llama/Llama-2-7b-chat-hf",
|
| 121 |
+
huggingfacehub_api_token=api_token,
|
| 122 |
temperature=0
|
| 123 |
)
|
| 124 |
return ChatHuggingFace(llm=llm).bind_tools(tools)
|
| 125 |
+
|
| 126 |
|
| 127 |
|
| 128 |
elif provider == LLMProvider.GOOGLE_GEMINI:
|
|
|
|
| 130 |
model="gemini-2.5-flash",
|
| 131 |
temperature=0
|
| 132 |
)
|
| 133 |
+
# search = GoogleSearchAPIWrapper()
|
| 134 |
+
|
| 135 |
+
# # Define the Google Search tool correctly
|
| 136 |
+
# google_search_tool = Tool(
|
| 137 |
+
# name="Google Search",
|
| 138 |
+
# description="Search Google for recent information.",
|
| 139 |
+
# func=search.run, # Use the run method to execute the search directly
|
| 140 |
+
# )
|
| 141 |
+
|
| 142 |
+
# tools.append(google_search_tool)
|
| 143 |
+
return chat.bind_tools(tools)
|
| 144 |
|
| 145 |
else:
|
| 146 |
raise ValueError(f"Unknown LLM provider: {provider}")
|
|
|
|
| 163 |
tavily_search_tool,
|
| 164 |
arxiv_search,
|
| 165 |
]
|
| 166 |
+
chat = self.get_chat_with_tools(self.provider, tools)
|
| 167 |
|
| 168 |
# Create the ReAct prompt template
|
| 169 |
prompt = ChatPromptTemplate.from_messages(
|
| 170 |
[
|
| 171 |
("system", self.system_prompt), # Use the new, detailed ReAct prompt
|
|
|
|
| 172 |
("human", "{input}"),
|
| 173 |
+
MessagesPlaceholder(variable_name="agent_scratchpad"),
|
| 174 |
+
|
| 175 |
]
|
| 176 |
)
|
| 177 |
|
|
|
|
| 209 |
|
| 210 |
def main():
|
| 211 |
load_dotenv(find_dotenv())
|
| 212 |
+
csv = CSVSCache()
|
| 213 |
+
df = csv.get_all_entries()
|
| 214 |
+
model = Model(LLMProvider.HUGGINGFACE)
|
| 215 |
#update_mode(model)
|
| 216 |
+
test_questions = [0, 6, 10, 12, 15]
|
| 217 |
+
for row in test_questions:
|
| 218 |
+
response = model.get_answer(df.iloc[row]['question'])
|
| 219 |
+
print(f"the output is: {response}")
|
| 220 |
|
| 221 |
if __name__ == "__main__":
|
| 222 |
main()
|