Spaces:
Runtime error
Runtime error
torch autocast
Browse files- .gitignore +3 -0
- app.py +55 -46
.gitignore
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
temp_frames
|
| 2 |
+
temp_frames_30
|
| 3 |
+
segmented_video.mp4
|
app.py
CHANGED
|
@@ -41,6 +41,8 @@ florence_model = load_model_without_flash_attn(load_florence_model)
|
|
| 41 |
florence_processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
| 42 |
|
| 43 |
|
|
|
|
|
|
|
| 44 |
def apply_color_mask(frame, mask, obj_id):
|
| 45 |
cmap = plt.get_cmap("tab10")
|
| 46 |
color = np.array(cmap(obj_id % 10)[:3]) # Use modulo 10 to cycle through colors
|
|
@@ -61,25 +63,26 @@ def apply_color_mask(frame, mask, obj_id):
|
|
| 61 |
colored_mask = mask * color
|
| 62 |
return frame * (1 - mask) + colored_mask * 255
|
| 63 |
|
|
|
|
|
|
|
| 64 |
def run_florence(image, text_input):
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
)
|
| 83 |
return parsed_answer[task_prompt]['bboxes'][0]
|
| 84 |
|
| 85 |
def remove_directory_contents(directory):
|
|
@@ -89,7 +92,8 @@ def remove_directory_contents(directory):
|
|
| 89 |
for name in dirs:
|
| 90 |
os.rmdir(os.path.join(root, name))
|
| 91 |
|
| 92 |
-
|
|
|
|
| 93 |
def process_video(video_path, prompt):
|
| 94 |
try:
|
| 95 |
# Get video info
|
|
@@ -123,14 +127,13 @@ def process_video(video_path, prompt):
|
|
| 123 |
print("Reshaped mask box:", mask_box)
|
| 124 |
|
| 125 |
# SAM2 segmentation on first frame
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
)
|
| 134 |
print("masks.shape", masks.shape)
|
| 135 |
|
| 136 |
mask = masks.squeeze().astype(bool)
|
|
@@ -145,21 +148,20 @@ def process_video(video_path, prompt):
|
|
| 145 |
|
| 146 |
print(f"Saved {len(frames)} temporary frames")
|
| 147 |
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
}
|
| 163 |
|
| 164 |
print('Segmenting for main vid done')
|
| 165 |
print(f"Number of segmented frames: {len(video_segments)}")
|
|
@@ -216,12 +218,19 @@ def segment_video(video_file, prompt):
|
|
| 216 |
demo = gr.Interface(
|
| 217 |
fn=segment_video,
|
| 218 |
inputs=[
|
| 219 |
-
gr.Video(label="Upload Video"),
|
| 220 |
-
gr.Textbox(label="Enter prompt
|
| 221 |
],
|
| 222 |
outputs=gr.Video(label="Segmented Video"),
|
| 223 |
-
title="Video Object Segmentation
|
| 224 |
-
description="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 225 |
)
|
| 226 |
|
| 227 |
demo.launch()
|
|
|
|
| 41 |
florence_processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
| 42 |
|
| 43 |
|
| 44 |
+
|
| 45 |
+
|
| 46 |
def apply_color_mask(frame, mask, obj_id):
|
| 47 |
cmap = plt.get_cmap("tab10")
|
| 48 |
color = np.array(cmap(obj_id % 10)[:3]) # Use modulo 10 to cycle through colors
|
|
|
|
| 63 |
colored_mask = mask * color
|
| 64 |
return frame * (1 - mask) + colored_mask * 255
|
| 65 |
|
| 66 |
+
@torch.inference_mode()
|
| 67 |
+
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
|
| 68 |
def run_florence(image, text_input):
|
| 69 |
+
task_prompt = '<OPEN_VOCABULARY_DETECTION>'
|
| 70 |
+
prompt = task_prompt + text_input
|
| 71 |
+
inputs = florence_processor(text=prompt, images=image, return_tensors="pt").to('cuda', torch.bfloat16)
|
| 72 |
+
generated_ids = florence_model.generate(
|
| 73 |
+
input_ids=inputs["input_ids"].cuda(),
|
| 74 |
+
pixel_values=inputs["pixel_values"].cuda(),
|
| 75 |
+
max_new_tokens=1024,
|
| 76 |
+
early_stopping=False,
|
| 77 |
+
do_sample=False,
|
| 78 |
+
num_beams=3,
|
| 79 |
+
)
|
| 80 |
+
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
| 81 |
+
parsed_answer = florence_processor.post_process_generation(
|
| 82 |
+
generated_text,
|
| 83 |
+
task=task_prompt,
|
| 84 |
+
image_size=(image.width, image.height)
|
| 85 |
+
)
|
|
|
|
| 86 |
return parsed_answer[task_prompt]['bboxes'][0]
|
| 87 |
|
| 88 |
def remove_directory_contents(directory):
|
|
|
|
| 92 |
for name in dirs:
|
| 93 |
os.rmdir(os.path.join(root, name))
|
| 94 |
|
| 95 |
+
@torch.inference_mode()
|
| 96 |
+
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
|
| 97 |
def process_video(video_path, prompt):
|
| 98 |
try:
|
| 99 |
# Get video info
|
|
|
|
| 127 |
print("Reshaped mask box:", mask_box)
|
| 128 |
|
| 129 |
# SAM2 segmentation on first frame
|
| 130 |
+
image_predictor.set_image(first_frame)
|
| 131 |
+
masks, _, _ = image_predictor.predict(
|
| 132 |
+
point_coords=None,
|
| 133 |
+
point_labels=None,
|
| 134 |
+
box=mask_box[None, :],
|
| 135 |
+
multimask_output=False,
|
| 136 |
+
)
|
|
|
|
| 137 |
print("masks.shape", masks.shape)
|
| 138 |
|
| 139 |
mask = masks.squeeze().astype(bool)
|
|
|
|
| 148 |
|
| 149 |
print(f"Saved {len(frames)} temporary frames")
|
| 150 |
|
| 151 |
+
inference_state = video_predictor.init_state(video_path=temp_dir)
|
| 152 |
+
_, _, _ = video_predictor.add_new_mask(
|
| 153 |
+
inference_state=inference_state,
|
| 154 |
+
frame_idx=0,
|
| 155 |
+
obj_id=1,
|
| 156 |
+
mask=mask
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
+
video_segments = {}
|
| 160 |
+
for out_frame_idx, out_obj_ids, out_mask_logits in video_predictor.propagate_in_video(inference_state):
|
| 161 |
+
video_segments[out_frame_idx] = {
|
| 162 |
+
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
|
| 163 |
+
for i, out_obj_id in enumerate(out_obj_ids)
|
| 164 |
+
}
|
|
|
|
| 165 |
|
| 166 |
print('Segmenting for main vid done')
|
| 167 |
print(f"Number of segmented frames: {len(video_segments)}")
|
|
|
|
| 218 |
demo = gr.Interface(
|
| 219 |
fn=segment_video,
|
| 220 |
inputs=[
|
| 221 |
+
gr.Video(label="Upload Video (Keep it under 10 seconds for this demo)"),
|
| 222 |
+
gr.Textbox(label="Enter text prompt for object detection")
|
| 223 |
],
|
| 224 |
outputs=gr.Video(label="Segmented Video"),
|
| 225 |
+
title="Text-Prompted Video Object Segmentation",
|
| 226 |
+
description="""
|
| 227 |
+
This demo uses [Florence-2](https://huggingface.co/microsoft/Florence-2-large), a vision-language model, to enable text-prompted object detection for [SAM2](https://github.com/facebookresearch/segment-anything).
|
| 228 |
+
Florence-2 interprets your text prompt, allowing SAM2 to segment the described object in the video.
|
| 229 |
+
|
| 230 |
+
1. Upload a short video (< 10 sec)
|
| 231 |
+
2. Describe the object to segment
|
| 232 |
+
3. Get your segmented video!
|
| 233 |
+
"""
|
| 234 |
)
|
| 235 |
|
| 236 |
demo.launch()
|