Spaces:
Running
Running
saifhmb
commited on
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# importing libraries
|
| 2 |
+
from datasets import load_dataset, load_dataset_builder
|
| 3 |
+
import numpy as np
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
import pandas as pd
|
| 6 |
+
import sklearn
|
| 7 |
+
from sklearn.compose import ColumnTransformer
|
| 8 |
+
from sklearn.preprocessing import OneHotEncoder, LabelEncoder, StandardScaler
|
| 9 |
+
from sklearn.pipeline import Pipeline
|
| 10 |
+
from sklearn.model_selection import train_test_split
|
| 11 |
+
from sklearn.naive_bayes import GaussianNB
|
| 12 |
+
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, accuracy_score, precision_score, recall_score, classification_report
|
| 13 |
+
import imblearn
|
| 14 |
+
from imblearn.under_sampling import RandomUnderSampler
|
| 15 |
+
from skops import hub_utils
|
| 16 |
+
import pickle
|
| 17 |
+
from skops.card import Card, metadata_from_config
|
| 18 |
+
from pathlib import Path
|
| 19 |
+
from tempfile import mkdtemp, mkstemp
|
| 20 |
+
|
| 21 |
+
# Loading the dataset
|
| 22 |
+
dataset_name = "saifhmb/FraudPaymentData"
|
| 23 |
+
dataset = load_dataset(dataset_name, split = 'train')
|
| 24 |
+
dataset = pd.DataFrame(dataset)
|
| 25 |
+
|
| 26 |
+
dataset = dataset.dropna()
|
| 27 |
+
dataset = dataset.drop(['Time_step','Transaction_Id','Sender_Id', 'Sender_Account','Bene_Id','Bene_Account'], axis = 1) # deleting high cardinality features
|
| 28 |
+
y = dataset.iloc[:, 5].values
|
| 29 |
+
dataset = dataset.drop(['Label'], axis = 1)
|
| 30 |
+
dataset = dataset.drop(['Sender_lob', 'Sender_Sector'], axis = 1) # delete column since there is only a single unique value for 'Sender_lob' and 'Sender_sector' is a high cardinal feature
|
| 31 |
+
|
| 32 |
+
# Encoding the Independent Variables
|
| 33 |
+
categoricalColumns = ['Sender_Country', 'Bene_Country', 'Transaction_Type']
|
| 34 |
+
onehot_categorical = OneHotEncoder(handle_unknown='ignore', sparse_output= False)
|
| 35 |
+
categorical_transformer = Pipeline(steps = [('onehot', onehot_categorical)])
|
| 36 |
+
|
| 37 |
+
numericalColumns = dataset.select_dtypes(include = np.number).columns
|
| 38 |
+
sc = StandardScaler()
|
| 39 |
+
numerical_transformer = Pipeline(steps = [('scale', sc)])
|
| 40 |
+
preprocessorForCategoricalColumns = ColumnTransformer(transformers=[('cat', categorical_transformer, categoricalColumns)], remainder ='passthrough')
|
| 41 |
+
preprocessorForAllColumns = ColumnTransformer(transformers=[('cat', categorical_transformer, categoricalColumns),('num',numerical_transformer,numericalColumns)],
|
| 42 |
+
remainder="passthrough")
|
| 43 |
+
|
| 44 |
+
# Spliting the datset into Training and Test set
|
| 45 |
+
X = dataset
|
| 46 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.15, random_state = 42) # random state is 0 or 42
|
| 47 |
+
|
| 48 |
+
# Train Naive Bayes Model using the Training set
|
| 49 |
+
# Handling imbalanced dataset
|
| 50 |
+
under_sampler = RandomUnderSampler()
|
| 51 |
+
X_under, y_under = under_sampler.fit_resample(X_train, y_train)
|
| 52 |
+
|
| 53 |
+
classifier = GaussianNB() # select the appropriate algorithm for the problem statement
|
| 54 |
+
model = Pipeline(steps = [('preprocessorAll', preprocessorForAllColumns),('classifier', classifier)])
|
| 55 |
+
model.fit(X_under, y_under)
|
| 56 |
+
|
| 57 |
+
# Predicting the Test result
|
| 58 |
+
y_pred = model.predict(X_test)
|
| 59 |
+
|
| 60 |
+
# Making the Confusion Matrix and evaluating performance
|
| 61 |
+
cm = confusion_matrix(y_pred, y_test, labels=model.classes_)
|
| 62 |
+
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=np.array(['0 - Normal', '1 - Fraudulent']))
|
| 63 |
+
disp.plot()
|
| 64 |
+
plt.show()
|
| 65 |
+
acc = accuracy_score(y_test, y_pred)
|
| 66 |
+
|
| 67 |
+
# Pickling the model
|
| 68 |
+
pickle_out = open("model.pkl", "wb")
|
| 69 |
+
pickle.dump(model, pickle_out)
|
| 70 |
+
pickle_out.close()
|
| 71 |
+
|
| 72 |
+
# Loading the model to predict on the data
|
| 73 |
+
pickle_in = open('model.pkl', 'rb')
|
| 74 |
+
model = pickle.load(pickle_in)
|
| 75 |
+
|
| 76 |
+
def welcome():
|
| 77 |
+
return 'welcome all'
|
| 78 |
+
|
| 79 |
+
# defining the function which will make the prediction using the data which the user inputs
|
| 80 |
+
def prediction(Sender_Country, Bene_Country, USD_amount, Transaction_Type):
|
| 81 |
+
X = pd.DataFrame([[Sender_Country, Bene_Country, USD_amount, Transaction_Type]], columns = ['Sender_Country', 'Bene_Country', 'USD_amount', 'Transaction_Type'])
|
| 82 |
+
prediction = model.predict(X)
|
| 83 |
+
print(prediction)
|
| 84 |
+
return prediction
|
| 85 |
+
|
| 86 |
+
# this is the main function in which we define our webpage
|
| 87 |
+
def main():
|
| 88 |
+
# giving the webpage a title
|
| 89 |
+
st.title("Fraud Detection ML App")
|
| 90 |
+
st.header("Model Description", divider = "gray")
|
| 91 |
+
multi = '''This is a Gaussian Naive Bayes model trained on a synthetic dataset, containining a large variety of transaction types representing normal activities
|
| 92 |
+
as well as abnormal/fraudulent activities. The model predicts whether a transaction is normal or fraudulent.
|
| 93 |
+
For more details on the model please refer to the model card at https://huggingface.co/saifhmb/fraud-detection-model
|
| 94 |
+
'''
|
| 95 |
+
st.markdown(multi)
|
| 96 |
+
st.markdown("To determine whether a transaction is normal or fraudulent, please **ENTER** the Sender Country, Beneficiary Country, Amount in USD and Transaction Type :")
|
| 97 |
+
col1, col2 = st.columns(2)
|
| 98 |
+
with col1:
|
| 99 |
+
Sender_Country = st.text_input("Sender Country")
|
| 100 |
+
with col2:
|
| 101 |
+
Bene_Country = st.text_input("Beneficiary Country")
|
| 102 |
+
|
| 103 |
+
col3, col4 = st.columns(2)
|
| 104 |
+
with col3:
|
| 105 |
+
USD_amount = st.number_input("Amount in USD")
|
| 106 |
+
with col4:
|
| 107 |
+
Transaction_Type = st.text_input("Transaction Type (Please enter one of the following: make-payment, quick-payment, move-funds, pay-check)")
|
| 108 |
+
result = ""
|
| 109 |
+
if st.button("Predict"):
|
| 110 |
+
result = prediction(Sender_Country, Bene_Country, USD_amount, Transaction_Type)
|
| 111 |
+
if result == 0:
|
| 112 |
+
st.success("The output is {}".format(result) + " This is a NORMAL transaction")
|
| 113 |
+
if result == 1:
|
| 114 |
+
st.success("The output is {}".format(result) + " This is a FRAUDULENT TRANSACTION")
|
| 115 |
+
|
| 116 |
+
if __name__=='__main__':
|
| 117 |
+
main()
|
| 118 |
+
|