Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import streamlit as st
|
| 3 |
+
from openai import OpenAI
|
| 4 |
+
import time
|
| 5 |
+
import re
|
| 6 |
+
|
| 7 |
+
# Set up API key
|
| 8 |
+
API_KEY = os.getenv("API_KEY")
|
| 9 |
+
URL = os.getenv("URL")
|
| 10 |
+
client = OpenAI(
|
| 11 |
+
api_key=API_KEY,
|
| 12 |
+
base_url=URL
|
| 13 |
+
)
|
| 14 |
+
|
| 15 |
+
# Available models
|
| 16 |
+
MODELS = [
|
| 17 |
+
"Meta-Llama-3.1-405B-Instruct",
|
| 18 |
+
"Meta-Llama-3.1-70B-Instruct",
|
| 19 |
+
"Meta-Llama-3.1-8B-Instruct"
|
| 20 |
+
]
|
| 21 |
+
|
| 22 |
+
# Available search strategies
|
| 23 |
+
SEARCH_STRATEGY = [
|
| 24 |
+
"None",
|
| 25 |
+
"Greedy-Best-Score",
|
| 26 |
+
"Iterative-Refinement",
|
| 27 |
+
"Monte-Carlo-Tree-Search"
|
| 28 |
+
]
|
| 29 |
+
|
| 30 |
+
def chat_with_ai(message, chat_history, system_prompt):
|
| 31 |
+
messages = [
|
| 32 |
+
{"role": "system", "content": system_prompt},
|
| 33 |
+
]
|
| 34 |
+
|
| 35 |
+
for human, ai, _ in chat_history:
|
| 36 |
+
messages.append({"role": "user", "content": human})
|
| 37 |
+
messages.append({"role": "assistant", "content": ai})
|
| 38 |
+
|
| 39 |
+
messages.append({"role": "user", "content": message})
|
| 40 |
+
|
| 41 |
+
return messages
|
| 42 |
+
|
| 43 |
+
def respond(message, chat_history, model, system_prompt, thinking_budget):
|
| 44 |
+
messages = chat_with_ai(message, chat_history, system_prompt.format(budget = thinking_budget))
|
| 45 |
+
response = ""
|
| 46 |
+
start_time = time.time()
|
| 47 |
+
with st.spinner("AI is thinking..."):
|
| 48 |
+
for chunk in client.chat.completions.create(
|
| 49 |
+
model=model,
|
| 50 |
+
messages=messages,
|
| 51 |
+
stream=True
|
| 52 |
+
):
|
| 53 |
+
content = chunk.choices[0].delta.content or ""
|
| 54 |
+
response += content
|
| 55 |
+
yield response, time.time() - start_time
|
| 56 |
+
|
| 57 |
+
def parse_and_display_response(response):
|
| 58 |
+
# Extract answer and reflection
|
| 59 |
+
answer_match = re.search(r'<answer>(.*?)</answer>', response, re.DOTALL)
|
| 60 |
+
reflection_match = re.search(r'<reflection>(.*?)</reflection>', response, re.DOTALL)
|
| 61 |
+
|
| 62 |
+
answer = answer_match.group(1).strip() if answer_match else ""
|
| 63 |
+
reflection = reflection_match.group(1).strip() if reflection_match else ""
|
| 64 |
+
|
| 65 |
+
# Remove answer, reflection, and final reward from the main response
|
| 66 |
+
response = re.sub(r'<answer>.*?</answer>', '', response, flags=re.DOTALL)
|
| 67 |
+
response = re.sub(r'<reflection>.*?</reflection>', '', response, flags=re.DOTALL)
|
| 68 |
+
response = re.sub(r'<reward>.*?</reward>\s*$', '', response, flags=re.DOTALL)
|
| 69 |
+
|
| 70 |
+
# Extract and display steps
|
| 71 |
+
steps = re.findall(r'<step>(.*?)</step>', response, re.DOTALL)
|
| 72 |
+
|
| 73 |
+
with st.expander("Show thinking process", expanded=False):
|
| 74 |
+
for i, step in enumerate(steps, 1):
|
| 75 |
+
st.markdown(f"**Step {i}:**")
|
| 76 |
+
st.write(step.strip())
|
| 77 |
+
st.markdown("---")
|
| 78 |
+
|
| 79 |
+
# Display answer and reflection
|
| 80 |
+
if answer:
|
| 81 |
+
st.markdown("### Answer:")
|
| 82 |
+
st.write(answer)
|
| 83 |
+
|
| 84 |
+
if reflection:
|
| 85 |
+
st.markdown("### Reflection:")
|
| 86 |
+
st.write(reflection)
|
| 87 |
+
|
| 88 |
+
def display_message_with_code_blocks(message):
|
| 89 |
+
# First, check if the message contains the special tags
|
| 90 |
+
if '<step>' in message or '<answer>' in message or '<reflection>' in message:
|
| 91 |
+
parse_and_display_response(message)
|
| 92 |
+
else:
|
| 93 |
+
# If not, use the original display logic
|
| 94 |
+
parts = re.split(r'(```[\s\S]*?```)', message)
|
| 95 |
+
|
| 96 |
+
for part in parts:
|
| 97 |
+
if part.startswith('```') and part.endswith('```'):
|
| 98 |
+
# This is a code block
|
| 99 |
+
code = part.strip('`').strip()
|
| 100 |
+
lang = code.split('\n')[0] if '\n' in code else ''
|
| 101 |
+
code = '\n'.join(code.split('\n')[1:]) if lang else code
|
| 102 |
+
st.code(code, language=lang, line_numbers=True)
|
| 103 |
+
else:
|
| 104 |
+
# This is regular text
|
| 105 |
+
st.write(part)
|
| 106 |
+
|
| 107 |
+
def main():
|
| 108 |
+
st.set_page_config(page_title="AI Chatbot", layout="wide")
|
| 109 |
+
|
| 110 |
+
st.title("Llama3.1-Instruct-O1")
|
| 111 |
+
st.markdown("<a href='https://sambanova.ai/fast-api?api_ref=907266' target='_blank'>Powered by Llama3.1 models through SN Cloud</a>", unsafe_allow_html=True)
|
| 112 |
+
|
| 113 |
+
if "chat_history" not in st.session_state:
|
| 114 |
+
st.session_state.chat_history = []
|
| 115 |
+
|
| 116 |
+
col1, col2 = st.columns([1, 1])
|
| 117 |
+
|
| 118 |
+
with col1:
|
| 119 |
+
model = st.selectbox("Select Model", MODELS, index=0)
|
| 120 |
+
thinking_budget = st.slider("Thinking Budget", 1, 100, 1, help="Control how much it thinks, pick between 1 to 100 inclusive")
|
| 121 |
+
|
| 122 |
+
with col2:
|
| 123 |
+
system_prompt = st.text_area(
|
| 124 |
+
"System Prompt",
|
| 125 |
+
value="""
|
| 126 |
+
You are a helpful assistant in normal conversation.
|
| 127 |
+
When given a problem to solve, you are an expert problem-solving assistant. Your task is to provide a detailed, step-by-step solution to a given question. Follow these instructions carefully:
|
| 128 |
+
|
| 129 |
+
1. Read the given question carefully and reset counter between <count> and </count> to {budget}
|
| 130 |
+
2. Generate a detailed, logical step-by-step solution.
|
| 131 |
+
3. Enclose each step of your solution within <step> and </step> tags.
|
| 132 |
+
4. You are allowed to use at most {budget} steps (starting budget), keep track of it by counting down within tags <count> </count>, STOP GENERATING MORE STEPS when hitting 0, you don't have to use all of them.
|
| 133 |
+
5. Do a self-reflection when you are unsure about how to proceed, based on the self-reflection and reward, decides whether you need to return to the previous steps.
|
| 134 |
+
6. After completing the solution steps, reorganize and synthesize the steps into the final answer within <answer> and </answer> tags.
|
| 135 |
+
7. Provide a critical, honest and subjective self-evaluation of your reasoning process within <reflection> and </reflection> tags.
|
| 136 |
+
8. Assign a quality score to your solution as a float between 0.0 (lowest quality) and 1.0 (highest quality), enclosed in <reward> and </reward> tags.
|
| 137 |
+
|
| 138 |
+
Example format:
|
| 139 |
+
<count> [starting budget] </count>
|
| 140 |
+
|
| 141 |
+
<step> [Content of step 1] </step>
|
| 142 |
+
<count> [remaining budget] </count>
|
| 143 |
+
|
| 144 |
+
<step> [Content of step 2] </step>
|
| 145 |
+
<reflection> [Evaluation of the steps so far] </reflection>
|
| 146 |
+
<reward> [Float between 0.0 and 1.0] </reward>
|
| 147 |
+
<count> [remaining budget] </count>
|
| 148 |
+
|
| 149 |
+
<step> [Content of step 3 or Content of some previous step] </step>
|
| 150 |
+
<count> [remaining budget] </count>
|
| 151 |
+
|
| 152 |
+
...
|
| 153 |
+
|
| 154 |
+
<step> [Content of final step] </step>
|
| 155 |
+
<count> [remaining budget] </count>
|
| 156 |
+
|
| 157 |
+
<answer> [Final Answer] </answer>
|
| 158 |
+
|
| 159 |
+
<reflection> [Evaluation of the solution] </reflection>
|
| 160 |
+
|
| 161 |
+
<reward> [Float between 0.0 and 1.0] </reward>
|
| 162 |
+
""",
|
| 163 |
+
height=200
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
st.markdown("---")
|
| 167 |
+
|
| 168 |
+
for human, ai, thinking_time in st.session_state.chat_history:
|
| 169 |
+
with st.chat_message("human"):
|
| 170 |
+
st.write(human)
|
| 171 |
+
with st.chat_message("ai"):
|
| 172 |
+
display_message_with_code_blocks(ai)
|
| 173 |
+
st.caption(f"Thinking time: {thinking_time:.2f} s")
|
| 174 |
+
|
| 175 |
+
message = st.chat_input("Type your message here...")
|
| 176 |
+
|
| 177 |
+
if message:
|
| 178 |
+
with st.chat_message("human"):
|
| 179 |
+
st.write(message)
|
| 180 |
+
|
| 181 |
+
with st.chat_message("ai"):
|
| 182 |
+
response_placeholder = st.empty()
|
| 183 |
+
time_placeholder = st.empty()
|
| 184 |
+
for response, elapsed_time in respond(message, st.session_state.chat_history, model, system_prompt, thinking_budget):
|
| 185 |
+
response_placeholder.markdown(response)
|
| 186 |
+
time_placeholder.caption(f"Thinking time: {elapsed_time:.2f} s")
|
| 187 |
+
response_placeholder.empty()
|
| 188 |
+
time_placeholder.empty()
|
| 189 |
+
display_message_with_code_blocks(response)
|
| 190 |
+
time_placeholder.caption(f"Thinking time: {elapsed_time:.2f} s")
|
| 191 |
+
|
| 192 |
+
st.session_state.chat_history.append((message, response, elapsed_time))
|
| 193 |
+
|
| 194 |
+
if st.button("Clear Chat"):
|
| 195 |
+
st.session_state.chat_history = []
|
| 196 |
+
st.experimental_rerun()
|
| 197 |
+
|
| 198 |
+
if __name__ == "__main__":
|
| 199 |
+
main()
|