Spaces:
Runtime error
Runtime error
django model try, no-accesss-token
Browse files- app.py +77 -5
- requirements.txt +5 -2
app.py
CHANGED
|
@@ -1,9 +1,81 @@
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
def
|
| 4 |
-
return
|
| 5 |
|
| 6 |
-
#
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
-
|
|
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
|
| 3 |
import gradio as gr
|
| 4 |
+
import torch
|
| 5 |
+
from unsloth import FastLanguageModel
|
| 6 |
+
from peft import PeftModel
|
| 7 |
+
from transformers import AutoTokenizer
|
| 8 |
+
|
| 9 |
+
class ModelManager:
|
| 10 |
+
_instance = None
|
| 11 |
+
|
| 12 |
+
def __init__(self):
|
| 13 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 14 |
+
self.model, self.tokenizer = self.load_model()
|
| 15 |
+
|
| 16 |
+
@classmethod
|
| 17 |
+
def get_instance(cls):
|
| 18 |
+
if cls._instance is None:
|
| 19 |
+
cls._instance = cls()
|
| 20 |
+
return cls._instance
|
| 21 |
+
|
| 22 |
+
def load_model(self):
|
| 23 |
+
# Load base model
|
| 24 |
+
backbone, tokenizer = FastLanguageModel.from_pretrained(
|
| 25 |
+
"unsloth/Llama-3.2-1B-Instruct-bnb-4bit",
|
| 26 |
+
load_in_4bit=True,
|
| 27 |
+
dtype=torch.float16,
|
| 28 |
+
device_map=self.device,
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
# Load your fine-tuned adapter
|
| 32 |
+
try:
|
| 33 |
+
model = PeftModel.from_pretrained(
|
| 34 |
+
backbone,
|
| 35 |
+
"samith-a/Django-orm-code-gen",
|
| 36 |
+
torch_dtype=torch.float16,
|
| 37 |
+
device_map=self.device,
|
| 38 |
+
)
|
| 39 |
+
print("Adapter weights loaded successfully")
|
| 40 |
+
except Exception as e:
|
| 41 |
+
print(f"Error loading adapter: {e}")
|
| 42 |
+
model = backbone
|
| 43 |
+
|
| 44 |
+
FastLanguageModel.for_inference(model)
|
| 45 |
+
return model, tokenizer
|
| 46 |
+
|
| 47 |
+
def generate(self, instruction: str, input_text: str, max_new_tokens: int = 128) -> str:
|
| 48 |
+
alpaca_template = (
|
| 49 |
+
"### Instruction:\n{}\n\n"
|
| 50 |
+
"### Input:\n{}\n\n"
|
| 51 |
+
"### Response:\n"
|
| 52 |
+
)
|
| 53 |
+
prompt = alpaca_template.format(instruction, input_text)
|
| 54 |
+
|
| 55 |
+
encoded = self.tokenizer([prompt], return_tensors="pt").to(self.device)
|
| 56 |
+
outputs = self.model.generate(**encoded, max_new_tokens=max_new_tokens)
|
| 57 |
+
|
| 58 |
+
raw = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 59 |
+
return raw.split("### Response:")[-1].strip()
|
| 60 |
+
|
| 61 |
+
# Instantiate once
|
| 62 |
+
manager = ModelManager.get_instance()
|
| 63 |
|
| 64 |
+
def predict(instruction, context, max_tokens=128):
|
| 65 |
+
return manager.generate(instruction, context, max_new_tokens=int(max_tokens))
|
| 66 |
|
| 67 |
+
# Gradio UI / API
|
| 68 |
+
demo = gr.Interface(
|
| 69 |
+
fn=predict,
|
| 70 |
+
inputs=[
|
| 71 |
+
gr.Textbox(lines=2, label="Instruction", placeholder="Describe what you want…"),
|
| 72 |
+
gr.Textbox(lines=5, label="Input (code/context)", placeholder="Optional context…"),
|
| 73 |
+
gr.Slider(minimum=16, maximum=512, step=16, label="Max new tokens", value=128),
|
| 74 |
+
],
|
| 75 |
+
outputs=gr.Textbox(label="Generated Code"),
|
| 76 |
+
title="Django-ORM Code Generator",
|
| 77 |
+
description="Ask the LoRA-finetuned LLaMA3.2 model to generate or modify Django ORM code.",
|
| 78 |
+
)
|
| 79 |
|
| 80 |
+
if __name__ == "__main__":
|
| 81 |
+
demo.launch()
|
requirements.txt
CHANGED
|
@@ -1,2 +1,5 @@
|
|
| 1 |
-
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
transformers
|
| 3 |
+
unsloth
|
| 4 |
+
peft
|
| 5 |
+
gradio
|