Spaces:
Sleeping
Sleeping
Create granite_model.py
Browse files- granite_model.py +124 -0
granite_model.py
ADDED
|
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Example of how to integrate the granite_model.py into your main app.py
|
| 2 |
+
|
| 3 |
+
# At the top of your app.py, add this import:
|
| 4 |
+
# Use a pipeline as a high-level helper
|
| 5 |
+
from transformers import pipeline
|
| 6 |
+
|
| 7 |
+
pipe = pipeline("text-generation", model="ibm-granite/granite-3.3-8b-instruct")
|
| 8 |
+
messages = [
|
| 9 |
+
{"role": "user", "content": "Who are you?"},
|
| 10 |
+
]
|
| 11 |
+
pipe(messages)
|
| 12 |
+
try:
|
| 13 |
+
from granite_model import GraniteModelIntegration
|
| 14 |
+
GRANITE_AVAILABLE = True
|
| 15 |
+
except ImportError:
|
| 16 |
+
GRANITE_AVAILABLE = False
|
| 17 |
+
logger.warning("granite_model.py not found. Granite features will be disabled.")
|
| 18 |
+
|
| 19 |
+
# In your AdvancedDocumentSummarizer.__init__ method, add:
|
| 20 |
+
def __init__(self):
|
| 21 |
+
self.summarizer = None
|
| 22 |
+
self.sentiment_analyzer = None
|
| 23 |
+
self.granite_integration = None # Add this line
|
| 24 |
+
self.cache = {}
|
| 25 |
+
|
| 26 |
+
# Initialize AI models
|
| 27 |
+
if TRANSFORMERS_AVAILABLE:
|
| 28 |
+
self._initialize_ai_models()
|
| 29 |
+
|
| 30 |
+
# Initialize Granite integration
|
| 31 |
+
if GRANITE_AVAILABLE:
|
| 32 |
+
try:
|
| 33 |
+
self.granite_integration = GraniteModelIntegration()
|
| 34 |
+
logger.info(f"Granite integration status: {'Available' if self.granite_integration.is_available() else 'Not Available'}")
|
| 35 |
+
except Exception as e:
|
| 36 |
+
logger.warning(f"Failed to initialize Granite integration: {e}")
|
| 37 |
+
|
| 38 |
+
# Initialize sentiment analyzer
|
| 39 |
+
if NLTK_AVAILABLE:
|
| 40 |
+
try:
|
| 41 |
+
self.sentiment_analyzer = SentimentIntensityAnalyzer()
|
| 42 |
+
except Exception as e:
|
| 43 |
+
logger.warning(f"Failed to initialize sentiment analyzer: {e}")
|
| 44 |
+
|
| 45 |
+
# Add these methods to your AdvancedDocumentSummarizer class:
|
| 46 |
+
def granite_enhanced_summary(self, text: str, summary_type: str = "medium") -> str:
|
| 47 |
+
"""Generate enhanced summary using Granite model"""
|
| 48 |
+
if not (self.granite_integration and self.granite_integration.is_available()):
|
| 49 |
+
return self.advanced_extractive_summary(text)
|
| 50 |
+
|
| 51 |
+
return self.granite_integration.generate_summary(text, summary_type)
|
| 52 |
+
|
| 53 |
+
def granite_analyze_document(self, text: str) -> Dict:
|
| 54 |
+
"""Use Granite model for advanced document analysis"""
|
| 55 |
+
if not (self.granite_integration and self.granite_integration.is_available()):
|
| 56 |
+
return {'analysis_available': False}
|
| 57 |
+
|
| 58 |
+
result = self.granite_integration.analyze_document(text)
|
| 59 |
+
return {
|
| 60 |
+
'granite_analysis': result.get('analysis', 'Analysis failed'),
|
| 61 |
+
'analysis_available': result.get('success', False),
|
| 62 |
+
'model_used': result.get('model_used', 'Unknown')
|
| 63 |
+
}
|
| 64 |
+
|
| 65 |
+
def granite_generate_questions(self, text: str, num_questions: int = 5) -> list:
|
| 66 |
+
"""Generate comprehension questions using Granite"""
|
| 67 |
+
if not (self.granite_integration and self.granite_integration.is_available()):
|
| 68 |
+
return []
|
| 69 |
+
|
| 70 |
+
return self.granite_integration.generate_questions(text, num_questions)
|
| 71 |
+
|
| 72 |
+
# In your process_document method, update the summary generation part:
|
| 73 |
+
# Generate summary - prioritize Granite if available for AI mode
|
| 74 |
+
if summary_type == "ai":
|
| 75 |
+
if self.granite_integration and self.granite_integration.is_available():
|
| 76 |
+
summary = self.granite_enhanced_summary(text, summary_length)
|
| 77 |
+
elif self.summarizer:
|
| 78 |
+
summary = self.ai_summary(text, params["max_length"], params["min_length"])
|
| 79 |
+
else:
|
| 80 |
+
summary = self.advanced_extractive_summary(text, params["sentences"])
|
| 81 |
+
else:
|
| 82 |
+
summary = self.advanced_extractive_summary(text, params["sentences"])
|
| 83 |
+
|
| 84 |
+
# Get Granite analysis and questions if available
|
| 85 |
+
granite_analysis = self.granite_analyze_document(text)
|
| 86 |
+
granite_questions = self.granite_generate_questions(text, 5)
|
| 87 |
+
|
| 88 |
+
# Add to result dictionary:
|
| 89 |
+
result = {
|
| 90 |
+
'original_text': text[:2000] + "..." if len(text) > 2000 else text,
|
| 91 |
+
'full_text_length': len(text),
|
| 92 |
+
'summary': summary,
|
| 93 |
+
'key_points': key_points,
|
| 94 |
+
'outline': outline,
|
| 95 |
+
'stats': stats,
|
| 96 |
+
'granite_analysis': granite_analysis,
|
| 97 |
+
'granite_questions': granite_questions, # Add this
|
| 98 |
+
'readability_score': readability_score,
|
| 99 |
+
'file_name': Path(file_path).name,
|
| 100 |
+
'file_size': os.path.getsize(file_path),
|
| 101 |
+
'processing_time': datetime.now().isoformat(),
|
| 102 |
+
'summary_type': summary_type,
|
| 103 |
+
'summary_length': summary_length,
|
| 104 |
+
'model_used': 'Granite 3.2 8B' if (summary_type == "ai" and self.granite_integration and self.granite_integration.is_available()) else ('AI (BART/T5)' if self.summarizer else 'Extractive')
|
| 105 |
+
}
|
| 106 |
+
|
| 107 |
+
# In your UI section, add the questions display:
|
| 108 |
+
# Add Granite questions if available
|
| 109 |
+
granite_questions_html = ""
|
| 110 |
+
if result.get("granite_questions"):
|
| 111 |
+
questions_list = "".join([f"<li style='margin-bottom: 10px; padding: 8px; background: rgba(255,255,255,0.1); border-radius: 6px;'>{q}</li>"
|
| 112 |
+
for q in result["granite_questions"]])
|
| 113 |
+
granite_questions_html = f'''
|
| 114 |
+
<div style="background: linear-gradient(135deg, #11998e 0%, #38ef7d 100%); color: white; padding: 20px; border-radius: 12px; margin: 15px 0; box-shadow: 0 6px 20px rgba(0,0,0,0.1);">
|
| 115 |
+
<h3>AI-Generated Questions</h3>
|
| 116 |
+
<p style="margin-bottom: 15px; opacity: 0.9;">Test your understanding with these Granite-generated questions:</p>
|
| 117 |
+
<ol style="padding-left: 20px; line-height: 1.6;">
|
| 118 |
+
{questions_list}
|
| 119 |
+
</ol>
|
| 120 |
+
</div>
|
| 121 |
+
'''
|
| 122 |
+
|
| 123 |
+
# Update your system status display:
|
| 124 |
+
**Granite 3.2 8B:** {"✅ Available" if (GRANITE_AVAILABLE and hasattr(summarizer, 'granite_integration') and summarizer.granite_integration and summarizer.granite_integration.is_available()) else "❌ Not Available"}
|