Spaces:
Paused
Paused
| import os | |
| import gradio as gr | |
| from langchain.embeddings import HuggingFaceEmbeddings | |
| from langchain.vectorstores import Chroma | |
| from langchain.llms import HuggingFacePipeline | |
| from langchain.chains import RetrievalQA | |
| from transformers import AutoConfig, AutoTokenizer, pipeline, AutoModelForCausalLM | |
| from langchain_community.document_loaders import DirectoryLoader | |
| import torch | |
| import re | |
| import transformers | |
| from urllib.parse import urlencode | |
| import spaces | |
| # Initialize embeddings and ChromaDB | |
| model_name = "sentence-transformers/all-mpnet-base-v2" | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| model_kwargs = {"device": device} | |
| embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs) | |
| loader = DirectoryLoader('./example', glob="**/*.pdf", recursive=True, use_multithreading=True) | |
| docs = loader.load() | |
| vectordb = Chroma.from_documents(documents=docs, embedding=embeddings, persist_directory="companies_db") | |
| books_db = Chroma(persist_directory="./companies_db", embedding_function=embeddings) | |
| books_db_client = books_db.as_retriever() | |
| # Initialize the model and tokenizer | |
| model_name = "stabilityai/stablelm-zephyr-3b" | |
| model_config = transformers.AutoConfig.from_pretrained(model_name, max_new_tokens=1024) | |
| model = transformers.AutoModelForCausalLM.from_pretrained( | |
| model_name, | |
| trust_remote_code=True, | |
| config=model_config, | |
| device_map=device, | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| query_pipeline = transformers.pipeline( | |
| "text-generation", | |
| model=model, | |
| tokenizer=tokenizer, | |
| return_full_text=True, | |
| torch_dtype=torch.float16, | |
| device_map=device, | |
| do_sample=True, | |
| temperature=0.7, | |
| top_p=0.9, | |
| top_k=50, | |
| max_new_tokens=256 | |
| ) | |
| llm = HuggingFacePipeline(pipeline=query_pipeline) | |
| books_db_client_retriever = RetrievalQA.from_chain_type( | |
| llm=llm, | |
| chain_type="stuff", | |
| retriever=books_db_client, | |
| verbose=True | |
| ) | |
| # Function to retrieve answer using the RAG system | |
| def test_rag(query): | |
| books_retriever = books_db_client_retriever.run(query) | |
| corrected_text_match = re.search(r"Helpful Answer:(.*)", books_retriever, re.DOTALL) | |
| if corrected_text_match: | |
| corrected_text_books = corrected_text_match.group(1).strip() | |
| else: | |
| corrected_text_books = "No helpful answer found." | |
| return corrected_text_books | |
| # OAuth Configuration | |
| TENANT_ID = os.getenv("TENANT_ID") | |
| CLIENT_ID = os.getenv("OAUTH_CLIENT_ID") | |
| CLIENT_SECRET = os.getenv("CLIENT_SECRET") | |
| REDIRECT_URI = os.getenv("SPACE_HOST") # Make sure this is the correct redirect URI | |
| AUTH_URL = os.getenv("AUTH_URL") | |
| TOKEN_URL = os.getenv("TOKEN_URL") | |
| SCOPE = os.getenv("SCOPE") | |
| access_token = None | |
| # OAuth Login Functionality | |
| def oauth_login(): | |
| params = { | |
| 'client_id': CLIENT_ID, | |
| 'response_type': 'code', | |
| 'redirect_uri': REDIRECT_URI, | |
| 'response_mode': 'query', | |
| 'scope': SCOPE, | |
| 'state': 'random_state_string' # Optional: Use for security | |
| } | |
| login_url = f"{AUTH_URL}?{urlencode(params)}" | |
| return login_url | |
| # Define the Gradio interface | |
| def chat(query, history=None): | |
| if history is None: | |
| history = [] | |
| if query: | |
| answer = test_rag(query) | |
| history.append((query, answer)) | |
| return history, "" # Clear input after submission | |
| # Function to clear input text | |
| def clear_input(): | |
| return "", # Return empty string to clear input field | |
| with gr.Blocks() as interface: | |
| gr.Markdown("## RAG Chatbot") | |
| gr.Markdown("Ask a question and get answers based on retrieved documents.") | |
| # Sign-In Button | |
| login_btn = gr.Button("Sign In with HF") | |
| # Redirect to OAuth login | |
| login_btn.click(lambda: f"window.open('{oauth_login()}')", outputs=None) | |
| # Hidden components initially | |
| input_box = gr.Textbox(label="Enter your question", placeholder="Type your question here...", visible=False) | |
| submit_btn = gr.Button("Submit", visible=False) | |
| chat_history = gr.Chatbot(label="Chat History", visible=False) | |
| # Show components after login | |
| def show_components(): | |
| return gr.update(visible=True), gr.update(visible=True), gr.update(visible=True) | |
| # After a successful login, show the input box and buttons | |
| submit_btn.click(show_components, outputs=[input_box, submit_btn, chat_history]) | |
| submit_btn.click(chat, inputs=[input_box, chat_history], outputs=[chat_history, input_box]) | |
| interface.launch() | |