Spaces:
Paused
Paused
auth
Browse files
app.py
CHANGED
|
@@ -1,18 +1,5 @@
|
|
| 1 |
import subprocess
|
| 2 |
-
import gradio as gr
|
| 3 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
| 4 |
-
from langchain.vectorstores import Chroma
|
| 5 |
-
from langchain.llms import HuggingFacePipeline
|
| 6 |
-
from langchain.chains import RetrievalQA
|
| 7 |
-
from transformers import AutoConfig, AutoTokenizer, pipeline, AutoModelForCausalLM
|
| 8 |
-
from langchain_community.document_loaders import DirectoryLoader
|
| 9 |
-
import torch
|
| 10 |
-
import re
|
| 11 |
-
import requests
|
| 12 |
-
from urllib.parse import urlencode, urlparse, parse_qs
|
| 13 |
-
import spaces
|
| 14 |
|
| 15 |
-
# Step 1: Run the setup script
|
| 16 |
script_path = './setup.sh' # Adjust the path if needed
|
| 17 |
|
| 18 |
# Run the script
|
|
@@ -23,6 +10,20 @@ if exit_code == 0:
|
|
| 23 |
else:
|
| 24 |
print(f"Script failed with exit code {exit_code}.")
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
# Initialize embeddings and ChromaDB
|
| 27 |
model_name = "sentence-transformers/all-mpnet-base-v2"
|
| 28 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
@@ -37,8 +38,9 @@ books_db_client = books_db.as_retriever()
|
|
| 37 |
|
| 38 |
# Initialize the model and tokenizer
|
| 39 |
model_name = "stabilityai/stablelm-zephyr-3b"
|
| 40 |
-
|
| 41 |
-
|
|
|
|
| 42 |
model_name,
|
| 43 |
trust_remote_code=True,
|
| 44 |
config=model_config,
|
|
@@ -47,7 +49,7 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
| 47 |
|
| 48 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 49 |
|
| 50 |
-
query_pipeline = pipeline(
|
| 51 |
"text-generation",
|
| 52 |
model=model,
|
| 53 |
tokenizer=tokenizer,
|
|
@@ -75,8 +77,8 @@ TENANT_ID = '2b093ced-2571-463f-bc3e-b4f8bcb427ee'
|
|
| 75 |
CLIENT_ID = '2a7c884c-942d-49e2-9e5d-7a29d8a0d3e5'
|
| 76 |
CLIENT_SECRET = 'EOF8Q~kKHCRgx8tnlLM-H8e93ifetxI6x7sU6bGW'
|
| 77 |
REDIRECT_URI = 'https://sanjeevbora-chatbot.hf.space/'
|
| 78 |
-
AUTH_URL = f"https://login.microsoftonline.com/
|
| 79 |
-
TOKEN_URL = f"https://login.microsoftonline.com/
|
| 80 |
|
| 81 |
params = {
|
| 82 |
'client_id': CLIENT_ID,
|
|
@@ -84,17 +86,30 @@ params = {
|
|
| 84 |
'redirect_uri': REDIRECT_URI,
|
| 85 |
'response_mode': 'query',
|
| 86 |
'scope': 'User.Read',
|
| 87 |
-
'state': '12345'
|
| 88 |
-
'prompt': 'login' # This ensures the login prompt appears even if already logged in
|
| 89 |
}
|
| 90 |
|
| 91 |
# Construct the login URL
|
| 92 |
login_url = f"{AUTH_URL}?{urlencode(params)}"
|
| 93 |
|
|
|
|
| 94 |
def show_login_button():
|
| 95 |
-
return f'<a href="{login_url}"
|
| 96 |
-
|
| 97 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
def exchange_code_for_token(auth_code):
|
| 99 |
data = {
|
| 100 |
'grant_type': 'authorization_code',
|
|
@@ -103,6 +118,7 @@ def exchange_code_for_token(auth_code):
|
|
| 103 |
'code': auth_code,
|
| 104 |
'redirect_uri': REDIRECT_URI
|
| 105 |
}
|
|
|
|
| 106 |
response = requests.post(TOKEN_URL, data=data)
|
| 107 |
|
| 108 |
if response.status_code == 200:
|
|
@@ -112,17 +128,14 @@ def exchange_code_for_token(auth_code):
|
|
| 112 |
else:
|
| 113 |
return None
|
| 114 |
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
query_params = parse_qs(parsed_url.query)
|
| 119 |
-
auth_code = query_params.get('code')
|
| 120 |
|
| 121 |
-
if
|
| 122 |
-
token
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
return "Login failed", False
|
| 126 |
|
| 127 |
# Function to retrieve answer using the RAG system
|
| 128 |
@spaces.GPU(duration=60)
|
|
@@ -152,43 +165,34 @@ def chat(query, history=None):
|
|
| 152 |
def clear_input():
|
| 153 |
return "", # Return empty string to clear input field
|
| 154 |
|
| 155 |
-
|
| 156 |
-
# Gradio Interface
|
| 157 |
with gr.Blocks() as interface:
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
# Components for chat (initially hidden)
|
| 187 |
-
input_box = gr.Textbox(label="Enter your question", placeholder="Type your question here...", visible=False)
|
| 188 |
-
submit_btn = gr.Button("Submit", visible=False)
|
| 189 |
-
chat_history = gr.Chatbot(label="Chat History", visible=False)
|
| 190 |
-
|
| 191 |
-
# Chat submission
|
| 192 |
-
submit_btn.click(chat, inputs=[input_box, chat_history], outputs=[chat_history, input_box])
|
| 193 |
|
| 194 |
interface.launch()
|
|
|
|
| 1 |
import subprocess
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
|
|
|
| 3 |
script_path = './setup.sh' # Adjust the path if needed
|
| 4 |
|
| 5 |
# Run the script
|
|
|
|
| 10 |
else:
|
| 11 |
print(f"Script failed with exit code {exit_code}.")
|
| 12 |
|
| 13 |
+
import gradio as gr
|
| 14 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 15 |
+
from langchain.vectorstores import Chroma
|
| 16 |
+
from langchain.llms import HuggingFacePipeline
|
| 17 |
+
from langchain.chains import RetrievalQA
|
| 18 |
+
from transformers import AutoConfig, AutoTokenizer, pipeline, AutoModelForCausalLM
|
| 19 |
+
from langchain_community.document_loaders import DirectoryLoader
|
| 20 |
+
import torch
|
| 21 |
+
import re
|
| 22 |
+
import transformers
|
| 23 |
+
import spaces
|
| 24 |
+
import requests
|
| 25 |
+
from urllib.parse import urlencode
|
| 26 |
+
|
| 27 |
# Initialize embeddings and ChromaDB
|
| 28 |
model_name = "sentence-transformers/all-mpnet-base-v2"
|
| 29 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 38 |
|
| 39 |
# Initialize the model and tokenizer
|
| 40 |
model_name = "stabilityai/stablelm-zephyr-3b"
|
| 41 |
+
|
| 42 |
+
model_config = transformers.AutoConfig.from_pretrained(model_name, max_new_tokens=1024)
|
| 43 |
+
model = transformers.AutoModelForCausalLM.from_pretrained(
|
| 44 |
model_name,
|
| 45 |
trust_remote_code=True,
|
| 46 |
config=model_config,
|
|
|
|
| 49 |
|
| 50 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 51 |
|
| 52 |
+
query_pipeline = transformers.pipeline(
|
| 53 |
"text-generation",
|
| 54 |
model=model,
|
| 55 |
tokenizer=tokenizer,
|
|
|
|
| 77 |
CLIENT_ID = '2a7c884c-942d-49e2-9e5d-7a29d8a0d3e5'
|
| 78 |
CLIENT_SECRET = 'EOF8Q~kKHCRgx8tnlLM-H8e93ifetxI6x7sU6bGW'
|
| 79 |
REDIRECT_URI = 'https://sanjeevbora-chatbot.hf.space/'
|
| 80 |
+
AUTH_URL = f"https://login.microsoftonline.com/2b093ced-2571-463f-bc3e-b4f8bcb427ee/oauth2/v2.0/authorize"
|
| 81 |
+
TOKEN_URL = f"https://login.microsoftonline.com/2b093ced-2571-463f-bc3e-b4f8bcb427ee/oauth2/v2.0/token"
|
| 82 |
|
| 83 |
params = {
|
| 84 |
'client_id': CLIENT_ID,
|
|
|
|
| 86 |
'redirect_uri': REDIRECT_URI,
|
| 87 |
'response_mode': 'query',
|
| 88 |
'scope': 'User.Read',
|
| 89 |
+
'state': '12345' # Optional state parameter
|
|
|
|
| 90 |
}
|
| 91 |
|
| 92 |
# Construct the login URL
|
| 93 |
login_url = f"{AUTH_URL}?{urlencode(params)}"
|
| 94 |
|
| 95 |
+
# Gradio interface
|
| 96 |
def show_login_button():
|
| 97 |
+
return f'<a href="{login_url}" target="_blank">Click here to login with Microsoft</a>'
|
| 98 |
+
|
| 99 |
+
# Dummy function to simulate token validation (you will replace this with actual validation)
|
| 100 |
+
def is_logged_in(token):
|
| 101 |
+
# Check if the token exists (or check if it's valid)
|
| 102 |
+
return token is not None
|
| 103 |
+
|
| 104 |
+
# Gradio interface
|
| 105 |
+
def check_login(status):
|
| 106 |
+
# If logged in, show the chatbot interface, otherwise show login link
|
| 107 |
+
if status:
|
| 108 |
+
return gr.update(visible=True), gr.update(visible=True)
|
| 109 |
+
else:
|
| 110 |
+
return gr.update(visible=False), gr.update(visible=False)
|
| 111 |
+
|
| 112 |
+
# Function to exchange authorization code for access token
|
| 113 |
def exchange_code_for_token(auth_code):
|
| 114 |
data = {
|
| 115 |
'grant_type': 'authorization_code',
|
|
|
|
| 118 |
'code': auth_code,
|
| 119 |
'redirect_uri': REDIRECT_URI
|
| 120 |
}
|
| 121 |
+
|
| 122 |
response = requests.post(TOKEN_URL, data=data)
|
| 123 |
|
| 124 |
if response.status_code == 200:
|
|
|
|
| 128 |
else:
|
| 129 |
return None
|
| 130 |
|
| 131 |
+
def login_user(auth_code):
|
| 132 |
+
# Exchange the authorization code for an access token
|
| 133 |
+
token = exchange_code_for_token(auth_code)
|
|
|
|
|
|
|
| 134 |
|
| 135 |
+
if token:
|
| 136 |
+
return token
|
| 137 |
+
else:
|
| 138 |
+
return None
|
|
|
|
| 139 |
|
| 140 |
# Function to retrieve answer using the RAG system
|
| 141 |
@spaces.GPU(duration=60)
|
|
|
|
| 165 |
def clear_input():
|
| 166 |
return "", # Return empty string to clear input field
|
| 167 |
|
|
|
|
|
|
|
| 168 |
with gr.Blocks() as interface:
|
| 169 |
+
gr.Markdown("## RAG Chatbot")
|
| 170 |
+
gr.Markdown("Please log in to continue.")
|
| 171 |
+
|
| 172 |
+
# Custom HTML to show login link
|
| 173 |
+
login_link = gr.HTML(f'<a href="{login_url}" target="_blank">Click here to login with Microsoft</a>')
|
| 174 |
+
|
| 175 |
+
# Login button to simulate the login process
|
| 176 |
+
login_button = gr.Button("Login")
|
| 177 |
+
|
| 178 |
+
# Components for chat (initially hidden)
|
| 179 |
+
input_box = gr.Textbox(label="Enter your question", placeholder="Type your question here...", visible=False)
|
| 180 |
+
submit_btn = gr.Button("Submit", visible=False)
|
| 181 |
+
chat_history = gr.Chatbot(label="Chat History", visible=False)
|
| 182 |
+
|
| 183 |
+
# Handle login button click
|
| 184 |
+
login_button.click(
|
| 185 |
+
login_user,
|
| 186 |
+
inputs=[],
|
| 187 |
+
outputs=[login_button], # You can also update the UI to show login status
|
| 188 |
+
queue=False
|
| 189 |
+
).then(
|
| 190 |
+
lambda token: check_login(is_logged_in(token)),
|
| 191 |
+
inputs=[],
|
| 192 |
+
outputs=[input_box, submit_btn]
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
# Input submission and chat handling
|
| 196 |
+
submit_btn.click(chat, inputs=[input_box, chat_history], outputs=[chat_history, input_box])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
|
| 198 |
interface.launch()
|