Spaces:
Paused
Paused
updated app.py
Browse files
app.py
CHANGED
|
@@ -1,82 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import
|
| 3 |
-
import
|
| 4 |
-
from
|
| 5 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
import spaces
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
# OAuth Configuration
|
| 10 |
TENANT_ID = '2b093ced-2571-463f-bc3e-b4f8bcb427ee'
|
| 11 |
CLIENT_ID = '2a7c884c-942d-49e2-9e5d-7a29d8a0d3e5'
|
| 12 |
CLIENT_SECRET = 'EOF8Q~kKHCRgx8tnlLM-H8e93ifetxI6x7sU6bGW'
|
| 13 |
-
REDIRECT_URI = 'https://sanjeevbora-chatbot.hf.space/'
|
| 14 |
AUTH_URL = f"https://login.microsoftonline.com/{TENANT_ID}/oauth2/v2.0/authorize"
|
| 15 |
TOKEN_URL = f"https://login.microsoftonline.com/{TENANT_ID}/oauth2/v2.0/token"
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
self.send_response(200)
|
| 35 |
-
self.end_headers()
|
| 36 |
-
self.wfile.write(b"Login successful! You can close this window.")
|
| 37 |
-
return
|
| 38 |
-
|
| 39 |
-
self.send_response(404)
|
| 40 |
-
self.end_headers()
|
| 41 |
-
|
| 42 |
-
def start_http_server():
|
| 43 |
-
server_address = ('', 8080)
|
| 44 |
-
httpd = HTTPServer(server_address, RequestHandler)
|
| 45 |
-
httpd.serve_forever()
|
| 46 |
-
|
| 47 |
-
def login():
|
| 48 |
-
params = {
|
| 49 |
'client_id': CLIENT_ID,
|
| 50 |
-
'
|
| 51 |
-
'
|
| 52 |
-
'
|
| 53 |
-
'scope': SCOPE,
|
| 54 |
-
'state': 'random_state_string' # Optional: Use for security
|
| 55 |
}
|
| 56 |
-
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
-
|
| 60 |
-
|
|
|
|
|
|
|
| 61 |
|
| 62 |
-
|
| 63 |
-
login()
|
| 64 |
-
return check_login()
|
| 65 |
@spaces.GPU(duration=60)
|
| 66 |
-
def
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
-
|
|
|
|
|
|
|
| 75 |
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
threading.Thread(target=start_http_server, daemon=True).start()
|
| 79 |
|
| 80 |
-
#
|
| 81 |
-
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import subprocess
|
| 2 |
+
|
| 3 |
+
script_path = './setup.sh' # Adjust the path if needed
|
| 4 |
+
|
| 5 |
+
# Run the script
|
| 6 |
+
exit_code = subprocess.call(['bash', script_path])
|
| 7 |
+
|
| 8 |
+
if exit_code == 0:
|
| 9 |
+
print("Script executed successfully.")
|
| 10 |
+
else:
|
| 11 |
+
print(f"Script failed with exit code {exit_code}.")
|
| 12 |
+
|
| 13 |
import gradio as gr
|
| 14 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 15 |
+
from langchain.vectorstores import Chroma
|
| 16 |
+
from langchain.llms import HuggingFacePipeline
|
| 17 |
+
from langchain.chains import RetrievalQA
|
| 18 |
+
from transformers import AutoConfig, AutoTokenizer, pipeline, AutoModelForCausalLM
|
| 19 |
+
from langchain_community.document_loaders import DirectoryLoader
|
| 20 |
+
from torch import bfloat16
|
| 21 |
+
import torch
|
| 22 |
+
import re
|
| 23 |
+
import transformers
|
| 24 |
import spaces
|
| 25 |
+
import requests
|
| 26 |
+
from urllib.parse import urlencode, urlparse, parse_qs
|
| 27 |
+
|
| 28 |
+
# Initialize embeddings and ChromaDB
|
| 29 |
+
model_name = "sentence-transformers/all-mpnet-base-v2"
|
| 30 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 31 |
+
model_kwargs = {"device": device}
|
| 32 |
+
embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs)
|
| 33 |
+
|
| 34 |
+
loader = DirectoryLoader('./example', glob="**/*.pdf", recursive=True, use_multithreading=True)
|
| 35 |
+
docs = loader.load()
|
| 36 |
+
vectordb = Chroma.from_documents(documents=docs, embedding=embeddings, persist_directory="companies_db")
|
| 37 |
+
books_db = Chroma(persist_directory="./companies_db", embedding_function=embeddings)
|
| 38 |
+
books_db_client = books_db.as_retriever()
|
| 39 |
+
|
| 40 |
+
# Initialize the model and tokenizer
|
| 41 |
+
model_name = "stabilityai/stablelm-zephyr-3b"
|
| 42 |
+
|
| 43 |
+
bnb_config = transformers.BitsAndBytesConfig(
|
| 44 |
+
load_in_4bit=True,
|
| 45 |
+
bnb_4bit_quant_type='nf4',
|
| 46 |
+
bnb_4bit_use_double_quant=True,
|
| 47 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
model_config = transformers.AutoConfig.from_pretrained(model_name, max_new_tokens=1024)
|
| 51 |
+
model = transformers.AutoModelForCausalLM.from_pretrained(
|
| 52 |
+
model_name,
|
| 53 |
+
trust_remote_code=True,
|
| 54 |
+
config=model_config,
|
| 55 |
+
quantization_config=bnb_config,
|
| 56 |
+
device_map=device,
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 60 |
+
|
| 61 |
+
query_pipeline = transformers.pipeline(
|
| 62 |
+
"text-generation",
|
| 63 |
+
model=model,
|
| 64 |
+
tokenizer=tokenizer,
|
| 65 |
+
return_full_text=True,
|
| 66 |
+
torch_dtype=torch.float16,
|
| 67 |
+
device_map=device,
|
| 68 |
+
do_sample=True,
|
| 69 |
+
temperature=0.7,
|
| 70 |
+
top_p=0.9,
|
| 71 |
+
top_k=50,
|
| 72 |
+
max_new_tokens=256
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
llm = HuggingFacePipeline(pipeline=query_pipeline)
|
| 76 |
+
|
| 77 |
+
books_db_client_retriever = RetrievalQA.from_chain_type(
|
| 78 |
+
llm=llm,
|
| 79 |
+
chain_type="stuff",
|
| 80 |
+
retriever=books_db_client,
|
| 81 |
+
verbose=True
|
| 82 |
+
)
|
| 83 |
|
| 84 |
# OAuth Configuration
|
| 85 |
TENANT_ID = '2b093ced-2571-463f-bc3e-b4f8bcb427ee'
|
| 86 |
CLIENT_ID = '2a7c884c-942d-49e2-9e5d-7a29d8a0d3e5'
|
| 87 |
CLIENT_SECRET = 'EOF8Q~kKHCRgx8tnlLM-H8e93ifetxI6x7sU6bGW'
|
| 88 |
+
REDIRECT_URI = 'https://sanjeevbora-chatbot.hf.space/' # Your redirect URI here
|
| 89 |
AUTH_URL = f"https://login.microsoftonline.com/{TENANT_ID}/oauth2/v2.0/authorize"
|
| 90 |
TOKEN_URL = f"https://login.microsoftonline.com/{TENANT_ID}/oauth2/v2.0/token"
|
| 91 |
+
|
| 92 |
+
# OAuth parameters
|
| 93 |
+
params = {
|
| 94 |
+
'client_id': CLIENT_ID,
|
| 95 |
+
'response_type': 'code',
|
| 96 |
+
'redirect_uri': REDIRECT_URI,
|
| 97 |
+
'response_mode': 'query',
|
| 98 |
+
'scope': 'User.Read',
|
| 99 |
+
'state': '12345'
|
| 100 |
+
}
|
| 101 |
+
|
| 102 |
+
# Construct the login URL
|
| 103 |
+
login_url = f"{AUTH_URL}?{urlencode(params)}"
|
| 104 |
+
|
| 105 |
+
# Function to exchange authorization code for access token
|
| 106 |
+
def exchange_code_for_token(auth_code):
|
| 107 |
+
data = {
|
| 108 |
+
'grant_type': 'authorization_code',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
'client_id': CLIENT_ID,
|
| 110 |
+
'client_secret': CLIENT_SECRET,
|
| 111 |
+
'code': auth_code,
|
| 112 |
+
'redirect_uri': REDIRECT_URI
|
|
|
|
|
|
|
| 113 |
}
|
| 114 |
+
|
| 115 |
+
response = requests.post(TOKEN_URL, data=data)
|
| 116 |
+
|
| 117 |
+
if response.status_code == 200:
|
| 118 |
+
token_data = response.json()
|
| 119 |
+
access_token = token_data.get('access_token')
|
| 120 |
+
return access_token
|
| 121 |
+
else:
|
| 122 |
+
return None
|
| 123 |
|
| 124 |
+
# Dummy function to simulate token validation (you will replace this with actual validation)
|
| 125 |
+
def is_logged_in(token):
|
| 126 |
+
# Check if the token exists (or check if it's valid)
|
| 127 |
+
return token is not None
|
| 128 |
|
| 129 |
+
# Function to retrieve answer using the RAG system
|
|
|
|
|
|
|
| 130 |
@spaces.GPU(duration=60)
|
| 131 |
+
def test_rag(query):
|
| 132 |
+
books_retriever = books_db_client_retriever.run(query)
|
| 133 |
+
|
| 134 |
+
# Extract the relevant answer using regex
|
| 135 |
+
corrected_text_match = re.search(r"Helpful Answer:(.*)", books_retriever, re.DOTALL)
|
| 136 |
+
|
| 137 |
+
if corrected_text_match:
|
| 138 |
+
corrected_text_books = corrected_text_match.group(1).strip()
|
| 139 |
+
else:
|
| 140 |
+
corrected_text_books = "No helpful answer found."
|
| 141 |
+
|
| 142 |
+
return corrected_text_books
|
| 143 |
|
| 144 |
+
# Define the Gradio interface
|
| 145 |
+
def chat(query, history=None):
|
| 146 |
+
if history is None:
|
| 147 |
+
history = []
|
| 148 |
+
if query:
|
| 149 |
+
answer = test_rag(query)
|
| 150 |
+
history.append((query, answer))
|
| 151 |
+
return history, "" # Clear input after submission
|
| 152 |
|
| 153 |
+
with gr.Blocks() as interface:
|
| 154 |
+
gr.Markdown("## RAG Chatbot")
|
| 155 |
+
gr.Markdown("Please log in to continue.")
|
| 156 |
|
| 157 |
+
# Step 1: Provide a link for the user to log in
|
| 158 |
+
login_link = gr.HTML(f'<a href="{login_url}" target="_blank">Click here to login with Microsoft</a>')
|
|
|
|
| 159 |
|
| 160 |
+
# Step 2: Ask the user to paste the authorization code after login
|
| 161 |
+
auth_code_box = gr.Textbox(label="Copy the link you got after loging in to the website", placeholder="Paste your Website link")
|
| 162 |
+
|
| 163 |
+
# Step 3: Button to handle token exchange after user pastes the authorization code
|
| 164 |
+
login_button = gr.Button("Submit Authorization Code")
|
| 165 |
+
|
| 166 |
+
# Handle login button click
|
| 167 |
+
def handle_login(auth_code):
|
| 168 |
+
# Extract the authorization code from the text box
|
| 169 |
+
parsed_url = urlparse(auth_code) # Parse the URL containing the authorization code
|
| 170 |
+
|
| 171 |
+
# Extract query parameters
|
| 172 |
+
query_params = parse_qs(parsed_url.query)
|
| 173 |
+
|
| 174 |
+
# Get the code value
|
| 175 |
+
code_value = query_params.get('code', [None])[0]
|
| 176 |
+
|
| 177 |
+
token = exchange_code_for_token(code_value)
|
| 178 |
+
if token:
|
| 179 |
+
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
|
| 180 |
+
else:
|
| 181 |
+
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
| 182 |
+
|
| 183 |
+
# Components for chat (initially hidden)
|
| 184 |
+
input_box = gr.Textbox(label="Enter your question", placeholder="Type your question here...", visible=False)
|
| 185 |
+
submit_btn = gr.Button("Submit", visible=False)
|
| 186 |
+
chat_history = gr.Chatbot(label="Chat History", visible=False)
|
| 187 |
+
|
| 188 |
+
login_button.click(handle_login, inputs=[auth_code_box], outputs=[input_box, submit_btn, chat_history])
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
# Chat handling
|
| 192 |
+
submit_btn.click(chat, inputs=[input_box, chat_history], outputs=[chat_history, input_box])
|
| 193 |
+
|
| 194 |
+
interface.launch()
|