app change
Browse files
app.py
CHANGED
|
@@ -1,7 +1,27 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
def greet(name):
|
| 4 |
-
return "Hello " + name + "!!"
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import onnxruntime as rt
|
| 3 |
+
from transformers import AutoTokenizer
|
| 4 |
+
import torch, json
|
| 5 |
|
|
|
|
|
|
|
| 6 |
|
| 7 |
+
tokenizer = AutoTokenizer.from_pretrained("distilroberta-base")
|
| 8 |
+
|
| 9 |
+
with open("label_types_encoded.json", "r") as fp:
|
| 10 |
+
encode_genre_types = json.load(fp)
|
| 11 |
+
|
| 12 |
+
inf_session = rt.InferenceSession('food-classifier-quantized.onnx')
|
| 13 |
+
input_name = inf_session.get_inputs()[0].name
|
| 14 |
+
output_name = inf_session.get_outputs()[0].name
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def classify_news_label(article):
|
| 18 |
+
input_ids = tokenizer(article)['input_ids'][:512]
|
| 19 |
+
logits = inf_session.run([output_name], {input_name: [input_ids]})[0]
|
| 20 |
+
logits = torch.FloatTensor(logits)
|
| 21 |
+
probs = torch.sigmoid(logits)[0]
|
| 22 |
+
return dict(zip(label, map(float, probs)))
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
label = gr.outputs.Label(num_top_classes=6)
|
| 26 |
+
iface = gr.Interface(fn=classify_news_label, inputs="text", outputs=label)
|
| 27 |
+
iface.launch(inline=False)
|