Spaces:
Sleeping
Sleeping
| import os | |
| import gradio as gr | |
| from transformers import pipeline | |
| import spacy | |
| import subprocess | |
| import json | |
| import nltk | |
| from nltk.corpus import wordnet, stopwords # Import stopwords here | |
| from spellchecker import SpellChecker | |
| import re | |
| import random | |
| import string | |
| # Ensure necessary NLTK data is downloaded | |
| def download_nltk_resources(): | |
| try: | |
| nltk.download('punkt') # Tokenizer for English text | |
| nltk.download('stopwords') # Stop words | |
| nltk.download('averaged_perceptron_tagger') # POS tagger | |
| nltk.download('wordnet') # WordNet | |
| nltk.download('omw-1.4') # Open Multilingual Wordnet | |
| except Exception as e: | |
| print(f"Error downloading NLTK resources: {e}") | |
| # Call the download function | |
| download_nltk_resources() | |
| top_words = set(stopwords.words("english")) # More efficient as a set | |
| import os | |
| import json | |
| # Path to the thesaurus file | |
| thesaurus_file_path = 'en_thesaurus.jsonl' # Ensure the file path is correct | |
| # Function to load the thesaurus into a dictionary | |
| def load_thesaurus(file_path): | |
| thesaurus_dict = {} | |
| try: | |
| with open(file_path, 'r', encoding='utf-8') as file: | |
| for line in file: | |
| # Parse each line as a JSON object | |
| entry = json.loads(line.strip()) | |
| word = entry.get("word") | |
| synonyms = entry.get("synonyms", []) | |
| if word: | |
| thesaurus_dict[word] = synonyms | |
| except Exception as e: | |
| print(f"Error loading thesaurus: {e}") | |
| return thesaurus_dict | |
| # Load the thesaurus | |
| synonym_dict = load_thesaurus(thesaurus_file_path) | |
| # Modified plagiarism_remover function to use the loaded thesaurus | |
| def plagiarism_remover(word): | |
| # Handle stopwords, punctuation, and excluded words | |
| if word.lower() in top_words or word.lower() in exclude_words or word in string.punctuation: | |
| return word | |
| # Check for synonyms in the custom thesaurus | |
| synonyms = synonym_dict.get(word.lower(), set()) | |
| # If no synonyms found in the custom thesaurus, use WordNet | |
| if not synonyms: | |
| for syn in wordnet.synsets(word): | |
| for lemma in syn.lemmas(): | |
| # Exclude overly technical synonyms or words with underscores | |
| if "_" not in lemma.name() and lemma.name().isalpha() and lemma.name().lower() != word.lower(): | |
| synonyms.add(lemma.name()) | |
| # Get part of speech for word and filter synonyms with the same POS | |
| pos_tag_word = nltk.pos_tag([word])[0] | |
| # Avoid replacing certain parts of speech | |
| if pos_tag_word[1] in exclude_tags: | |
| return word | |
| filtered_synonyms = [syn for syn in synonyms if nltk.pos_tag([syn])[0][1] == pos_tag_word[1]] | |
| # Return original word if no appropriate synonyms found | |
| if not filtered_synonyms: | |
| return word | |
| # Select a random synonym from the filtered list | |
| synonym_choice = random.choice(filtered_synonyms) | |
| # Retain original capitalization | |
| if word.istitle(): | |
| return synonym_choice.title() | |
| return synonym_choice | |
| # Words we don't want to replace | |
| exclude_tags = {'PRP', 'PRP$', 'MD', 'VBZ', 'VBP', 'VBD', 'VBG', 'VBN', 'TO', 'IN', 'DT', 'CC'} | |
| exclude_words = {'is', 'am', 'are', 'was', 'were', 'have', 'has', 'do', 'does', 'did', 'will', 'shall', 'should', 'would', 'could', 'can', 'may', 'might'} | |
| # Initialize the English text classification pipeline for AI detection | |
| pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta") | |
| # Initialize the spell checker | |
| spell = SpellChecker() | |
| # Ensure the SpaCy model is installed | |
| try: | |
| nlp = spacy.load("en_core_web_sm") | |
| except OSError: | |
| subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"]) | |
| nlp = spacy.load("en_core_web_sm") | |
| # Function to predict the label and score for English text (AI Detection) | |
| def predict_en(text): | |
| res = pipeline_en(text)[0] | |
| return res['label'], res['score'] | |
| # Function to remove redundant and meaningless words | |
| def remove_redundant_words(text): | |
| doc = nlp(text) | |
| meaningless_words = {"actually", "basically", "literally", "really", "very", "just"} | |
| filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words] | |
| return ' '.join(filtered_text) | |
| # Function to fix spacing before punctuation | |
| def fix_punctuation_spacing(text): | |
| # Split the text into words and punctuation | |
| words = text.split(' ') | |
| cleaned_words = [] | |
| punctuation_marks = {',', '.', "'", '!', '?', ':'} | |
| for word in words: | |
| if cleaned_words and word and word[0] in punctuation_marks: | |
| cleaned_words[-1] += word | |
| else: | |
| cleaned_words.append(word) | |
| return ' '.join(cleaned_words).replace(' ,', ',').replace(' .', '.').replace(" '", "'") \ | |
| .replace(' !', '!').replace(' ?', '?').replace(' :', ':') | |
| # Function to fix possessives like "Earth's" | |
| def fix_possessives(text): | |
| text = re.sub(r'(\w)\s\'\s?s', r"\1's", text) | |
| return text | |
| # Function to capitalize the first letter of sentences and proper nouns | |
| def capitalize_sentences_and_nouns(text): | |
| doc = nlp(text) | |
| corrected_text = [] | |
| for sent in doc.sents: | |
| sentence = [] | |
| for token in sent: | |
| if token.i == sent.start: | |
| sentence.append(token.text.capitalize()) | |
| elif token.pos_ == "PROPN": | |
| sentence.append(token.text.capitalize()) | |
| else: | |
| sentence.append(token.text) | |
| corrected_text.append(' '.join(sentence)) | |
| return ' '.join(corrected_text) | |
| # Function to force capitalization of the first letter of every sentence and ensure full stops | |
| def force_first_letter_capital(text): | |
| sentences = re.split(r'(?<=\w[.!?])\s+', text) | |
| capitalized_sentences = [] | |
| for sentence in sentences: | |
| if sentence: | |
| capitalized_sentence = sentence[0].capitalize() + sentence[1:] | |
| if not re.search(r'[.!?]$', capitalized_sentence): | |
| capitalized_sentence += '.' | |
| capitalized_sentences.append(capitalized_sentence) | |
| return " ".join(capitalized_sentences) | |
| # Function to correct tense errors in a sentence | |
| def correct_tense_errors(text): | |
| doc = nlp(text) | |
| corrected_text = [] | |
| for token in doc: | |
| if token.pos_ == "VERB" and token.dep_ in {"aux", "auxpass"}: | |
| lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text | |
| corrected_text.append(lemma) | |
| else: | |
| corrected_text.append(token.text) | |
| return ' '.join(corrected_text) | |
| # Function to check and correct article errors | |
| def correct_article_errors(text): | |
| doc = nlp(text) | |
| corrected_text = [] | |
| for token in doc: | |
| if token.text in ['a', 'an']: | |
| next_token = token.nbor(1) | |
| if token.text == "a" and next_token.text[0].lower() in "aeiou": | |
| corrected_text.append("an") | |
| elif token.text == "an" and next_token.text[0].lower() not in "aeiou": | |
| corrected_text.append("a") | |
| else: | |
| corrected_text.append(token.text) | |
| else: | |
| corrected_text.append(token.text) | |
| return ' '.join(corrected_text) | |
| # Function to ensure subject-verb agreement | |
| def ensure_subject_verb_agreement(text): | |
| doc = nlp(text) | |
| corrected_text = [] | |
| for token in doc: | |
| if token.dep_ == "nsubj" and token.head.pos_ == "VERB": | |
| if token.tag_ == "NN" and token.head.tag_ != "VBZ": | |
| corrected_text.append(token.head.lemma_ + "s") | |
| elif token.tag_ == "NNS" and token.head.tag_ == "VBZ": | |
| corrected_text.append(token.head.lemma_) | |
| corrected_text.append(token.text) | |
| return ' '.join(corrected_text) | |
| # Function to correct spelling errors | |
| # Function to correct spelling errors | |
| def correct_spelling(text): | |
| words = text.split() | |
| corrected_words = [] | |
| for word in words: | |
| corrected_word = spell.correction(word) | |
| # If correction returns None, keep the original word | |
| corrected_words.append(corrected_word if corrected_word is not None else word) | |
| return ' '.join(corrected_words) | |
| # Main processing function for paraphrasing and grammar correction | |
| def paraphrase_and_correct(text): | |
| cleaned_text = remove_redundant_words(text) | |
| cleaned_text = fix_punctuation_spacing(cleaned_text) | |
| cleaned_text = fix_possessives(cleaned_text) | |
| cleaned_text = capitalize_sentences_and_nouns(cleaned_text) | |
| cleaned_text = force_first_letter_capital(cleaned_text) | |
| cleaned_text = correct_tense_errors(cleaned_text) | |
| cleaned_text = correct_article_errors(cleaned_text) | |
| cleaned_text = ensure_subject_verb_agreement(cleaned_text) | |
| cleaned_text = correct_spelling(cleaned_text) | |
| plag_removed = plagiarism_removal(cleaned_text) | |
| return plag_removed | |
| # Create the Gradio interface | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# AI Text Processor") | |
| with gr.Tab("AI Detection"): | |
| t1 = gr.Textbox(lines=5, label='Input Text') | |
| output1 = gr.Label() | |
| button1 = gr.Button("π Process!") | |
| button1.click(fn=predict_en, inputs=t1, outputs=output1) | |
| with gr.Tab("Paraphrasing and Grammar Correction"): | |
| t2 = gr.Textbox(lines=5, label='Input Text') | |
| button2 = gr.Button("π Process!") | |
| output2 = gr.Textbox(lines=5, label='Processed Text') | |
| button2.click(fn=paraphrase_and_correct, inputs=t2, outputs=output2) | |
| demo.launch() | |