Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,18 +5,39 @@ import spacy
|
|
| 5 |
import subprocess
|
| 6 |
import nltk
|
| 7 |
from nltk.corpus import wordnet
|
| 8 |
-
from nltk.corpus import stopwords
|
|
|
|
| 9 |
from spellchecker import SpellChecker
|
| 10 |
import re
|
|
|
|
|
|
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
|
|
|
|
|
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
|
| 21 |
def plagiarism_removal(text):
|
| 22 |
def plagiarism_remover(word):
|
|
@@ -67,33 +88,6 @@ def plagiarism_removal(text):
|
|
| 67 |
|
| 68 |
return " ".join(corrected_text)
|
| 69 |
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
# Words we don't want to replace
|
| 77 |
-
exclude_tags = {'PRP', 'PRP$', 'MD', 'VBZ', 'VBP', 'VBD', 'VBG', 'VBN', 'TO', 'IN', 'DT', 'CC'}
|
| 78 |
-
exclude_words = {'is', 'am', 'are', 'was', 'were', 'have', 'has', 'do', 'does', 'did', 'will', 'shall', 'should', 'would', 'could', 'can', 'may', 'might'}
|
| 79 |
-
|
| 80 |
-
# Initialize the English text classification pipeline for AI detection
|
| 81 |
-
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
| 82 |
-
|
| 83 |
-
# Initialize the spell checker
|
| 84 |
-
spell = SpellChecker()
|
| 85 |
-
|
| 86 |
-
# Ensure necessary NLTK data is downloaded
|
| 87 |
-
nltk.download('wordnet')
|
| 88 |
-
nltk.download('omw-1.4')
|
| 89 |
-
|
| 90 |
-
# Ensure the SpaCy model is installed
|
| 91 |
-
try:
|
| 92 |
-
nlp = spacy.load("en_core_web_sm")
|
| 93 |
-
except OSError:
|
| 94 |
-
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
| 95 |
-
nlp = spacy.load("en_core_web_sm")
|
| 96 |
-
|
| 97 |
# Function to predict the label and score for English text (AI Detection)
|
| 98 |
def predict_en(text):
|
| 99 |
res = pipeline_en(text)[0]
|
|
@@ -213,14 +207,11 @@ def correct_spelling(text):
|
|
| 213 |
corrected_words.append(word)
|
| 214 |
return ' '.join(corrected_words)
|
| 215 |
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
# Main function for paraphrasing and grammar correction
|
| 220 |
def paraphrase_and_correct(text):
|
| 221 |
-
|
| 222 |
cleaned_text = remove_redundant_words(text)
|
| 223 |
-
plag_removed=plagiarism_removal(cleaned_text)
|
| 224 |
paraphrased_text = capitalize_sentences_and_nouns(plag_removed)
|
| 225 |
paraphrased_text = force_first_letter_capital(paraphrased_text)
|
| 226 |
paraphrased_text = correct_article_errors(paraphrased_text)
|
|
|
|
| 5 |
import subprocess
|
| 6 |
import nltk
|
| 7 |
from nltk.corpus import wordnet
|
| 8 |
+
from nltk.corpus import stopwords
|
| 9 |
+
from nltk.tokenize import word_tokenize
|
| 10 |
from spellchecker import SpellChecker
|
| 11 |
import re
|
| 12 |
+
import string
|
| 13 |
+
import random
|
| 14 |
|
| 15 |
+
# Download necessary NLTK data
|
| 16 |
+
nltk.download('punkt')
|
| 17 |
+
nltk.download('stopwords')
|
| 18 |
+
nltk.download('averaged_perceptron_tagger')
|
| 19 |
+
nltk.download('wordnet')
|
| 20 |
+
nltk.download('omw-1.4')
|
| 21 |
+
|
| 22 |
+
# Initialize stopwords
|
| 23 |
+
stop_words = set(stopwords.words("english"))
|
| 24 |
+
|
| 25 |
+
# Words we don't want to replace
|
| 26 |
+
exclude_tags = {'PRP', 'PRP$', 'MD', 'VBZ', 'VBP', 'VBD', 'VBG', 'VBN', 'TO', 'IN', 'DT', 'CC'}
|
| 27 |
+
exclude_words = {'is', 'am', 'are', 'was', 'were', 'have', 'has', 'do', 'does', 'did', 'will', 'shall', 'should', 'would', 'could', 'can', 'may', 'might'}
|
| 28 |
+
|
| 29 |
+
# Initialize the English text classification pipeline for AI detection
|
| 30 |
+
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
| 31 |
|
| 32 |
+
# Initialize the spell checker
|
| 33 |
+
spell = SpellChecker()
|
| 34 |
|
| 35 |
+
# Ensure the SpaCy model is installed
|
| 36 |
+
try:
|
| 37 |
+
nlp = spacy.load("en_core_web_sm")
|
| 38 |
+
except OSError:
|
| 39 |
+
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
| 40 |
+
nlp = spacy.load("en_core_web_sm")
|
| 41 |
|
| 42 |
def plagiarism_removal(text):
|
| 43 |
def plagiarism_remover(word):
|
|
|
|
| 88 |
|
| 89 |
return " ".join(corrected_text)
|
| 90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
# Function to predict the label and score for English text (AI Detection)
|
| 92 |
def predict_en(text):
|
| 93 |
res = pipeline_en(text)[0]
|
|
|
|
| 207 |
corrected_words.append(word)
|
| 208 |
return ' '.join(corrected_words)
|
| 209 |
|
|
|
|
|
|
|
|
|
|
| 210 |
# Main function for paraphrasing and grammar correction
|
| 211 |
def paraphrase_and_correct(text):
|
| 212 |
+
# Add synonym replacement here
|
| 213 |
cleaned_text = remove_redundant_words(text)
|
| 214 |
+
plag_removed = plagiarism_removal(cleaned_text)
|
| 215 |
paraphrased_text = capitalize_sentences_and_nouns(plag_removed)
|
| 216 |
paraphrased_text = force_first_letter_capital(paraphrased_text)
|
| 217 |
paraphrased_text = correct_article_errors(paraphrased_text)
|