Spaces:
Running
Running
| import os | |
| import gradio as gr | |
| from transformers import pipeline | |
| import spacy | |
| import subprocess | |
| import nltk | |
| from nltk.corpus import wordnet | |
| from gensim import downloader as api | |
| # Ensure necessary NLTK data is downloaded | |
| nltk.download('wordnet') | |
| nltk.download('omw-1.4') | |
| # Ensure the SpaCy model is installed | |
| try: | |
| nlp = spacy.load("en_core_web_sm") | |
| except OSError: | |
| subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"]) | |
| nlp = spacy.load("en_core_web_sm") | |
| # Load a smaller Word2Vec model from Gensim's pre-trained models | |
| word_vectors = api.load("glove-wiki-gigaword-50") | |
| # Load the English AI detection pipeline using the Hello-SimpleAI model | |
| pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta") | |
| # AI detection function using the Hello-SimpleAI/chatgpt-detector-roberta model | |
| def detect_ai_generated(text): | |
| res = pipeline_en(text)[0] | |
| label = res['label'] # "LABEL_0" or "LABEL_1" | |
| score = res['score'] * 100 # Convert probability to percentage | |
| # Map the model's label to human-readable label | |
| human_readable_label = "AI" if label == "LABEL_1" else "Human" | |
| # Return formatted string with label and percentage score | |
| return f"The content is {score:.2f}% {human_readable_label} Written", score | |
| # Function to get synonyms using NLTK WordNet | |
| def get_synonyms_nltk(word, pos): | |
| synsets = wordnet.synsets(word, pos=pos) | |
| if synsets: | |
| lemmas = synsets[0].lemmas() | |
| return [lemma.name() for lemma in lemmas] | |
| return [] | |
| # Function to capitalize the first letter of sentences and proper nouns | |
| def capitalize_sentences_and_nouns(text): | |
| doc = nlp(text) | |
| corrected_text = [] | |
| for sent in doc.sents: | |
| sentence = [] | |
| for token in sent: | |
| if token.i == sent.start: # First word of the sentence | |
| sentence.append(token.text.capitalize()) | |
| elif token.pos_ == "PROPN": # Proper noun | |
| sentence.append(token.text.capitalize()) | |
| else: | |
| sentence.append(token.text) | |
| corrected_text.append(' '.join(sentence)) | |
| return ' '.join(corrected_text) | |
| # Paraphrasing function using SpaCy and NLTK | |
| def paraphrase_with_spacy_nltk(text): | |
| doc = nlp(text) | |
| paraphrased_words = [] | |
| for token in doc: | |
| # Map SpaCy POS tags to WordNet POS tags | |
| pos = None | |
| if token.pos_ in {"NOUN"}: | |
| pos = wordnet.NOUN | |
| elif token.pos_ in {"VERB"}: | |
| pos = wordnet.VERB | |
| elif token.pos_ in {"ADJ"}: | |
| pos = wordnet.ADJ | |
| elif token.pos_ in {"ADV"}: | |
| pos = wordnet.ADV | |
| synonyms = get_synonyms_nltk(token.text.lower(), pos) if pos else [] | |
| # Replace with a synonym only if it makes sense | |
| if synonyms and token.pos_ in {"NOUN", "VERB", "ADJ", "ADV"} and synonyms[0] != token.text.lower(): | |
| paraphrased_words.append(synonyms[0]) | |
| else: | |
| paraphrased_words.append(token.text) | |
| # Join the words back into a sentence | |
| paraphrased_sentence = ' '.join(paraphrased_words) | |
| # Capitalize sentences and proper nouns | |
| corrected_text = capitalize_sentences_and_nouns(paraphrased_sentence) | |
| return corrected_text | |
| # Combined function: Paraphrase -> Capitalization | |
| def paraphrase_and_correct(text): | |
| # Step 1: Paraphrase the text | |
| paraphrased_text = paraphrase_with_spacy_nltk(text) | |
| # Step 2: Capitalize sentences and proper nouns | |
| final_text = capitalize_sentences_and_nouns(paraphrased_text) | |
| return final_text | |
| # Gradio interface definition | |
| with gr.Blocks() as interface: | |
| with gr.Row(): | |
| with gr.Column(): | |
| text_input = gr.Textbox(lines=5, label="Input Text") | |
| detect_button = gr.Button("AI Detection") | |
| paraphrase_button = gr.Button("Paraphrase & Correct") | |
| with gr.Column(): | |
| output_label = gr.Textbox(label="Predicted Label 🎃") | |
| output_prob = gr.Textbox(label="Probability (%)") | |
| detect_button.click(detect_ai_generated, inputs=text_input, outputs=[output_label, output_prob]) | |
| paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_label) | |
| # Launch the Gradio app | |
| interface.launch(debug=False) | |