Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,10 +5,6 @@ import spacy
|
|
| 5 |
import subprocess
|
| 6 |
import nltk
|
| 7 |
from nltk.corpus import wordnet
|
| 8 |
-
from textblob import TextBlob
|
| 9 |
-
from pattern.en import conjugate, lemma, pluralize, singularize
|
| 10 |
-
from gector.gec_model import GecBERTModel # Import GECToR Model
|
| 11 |
-
from utils.helpers import read_lines, normalize # GECToR utilities
|
| 12 |
|
| 13 |
# Initialize the English text classification pipeline for AI detection
|
| 14 |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
|
@@ -55,71 +51,63 @@ def capitalize_sentences_and_nouns(text):
|
|
| 55 |
|
| 56 |
return ' '.join(corrected_text)
|
| 57 |
|
| 58 |
-
# Function to correct tense errors
|
| 59 |
def correct_tense_errors(text):
|
| 60 |
doc = nlp(text)
|
| 61 |
corrected_text = []
|
| 62 |
-
|
| 63 |
for token in doc:
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
|
|
|
| 68 |
else:
|
| 69 |
corrected_text.append(token.text)
|
| 70 |
-
|
| 71 |
return ' '.join(corrected_text)
|
| 72 |
|
| 73 |
-
# Function to correct singular/plural errors
|
| 74 |
def correct_singular_plural_errors(text):
|
| 75 |
doc = nlp(text)
|
| 76 |
corrected_text = []
|
| 77 |
-
|
| 78 |
for token in doc:
|
| 79 |
if token.pos_ == "NOUN":
|
|
|
|
| 80 |
if token.tag_ == "NN": # Singular noun
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
elif token.tag_ == "NNS": # Plural noun
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
else:
|
| 85 |
corrected_text.append(token.text)
|
| 86 |
-
|
| 87 |
return ' '.join(corrected_text)
|
| 88 |
|
| 89 |
-
# Function to
|
| 90 |
-
def
|
| 91 |
-
|
| 92 |
-
corrected_text =
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
lowercase_tokens=0,
|
| 106 |
-
model_name="roberta",
|
| 107 |
-
special_tokens_fix=1,
|
| 108 |
-
log=False,
|
| 109 |
-
confidence=0,
|
| 110 |
-
del_confidence=0,
|
| 111 |
-
is_ensemble=False,
|
| 112 |
-
weigths=None)
|
| 113 |
-
return model
|
| 114 |
-
|
| 115 |
-
# Load the GECToR model
|
| 116 |
-
gector_model = load_gector_model()
|
| 117 |
-
|
| 118 |
-
# Function to correct grammar using GECToR
|
| 119 |
-
def correct_grammar_gector(text):
|
| 120 |
-
sentences = [text.split()]
|
| 121 |
-
corrected_sentences, _ = gector_model.handle_batch(sentences)
|
| 122 |
-
return " ".join(corrected_sentences[0])
|
| 123 |
|
| 124 |
# Paraphrasing function using SpaCy and NLTK (Humanifier)
|
| 125 |
def paraphrase_with_spacy_nltk(text):
|
|
@@ -146,17 +134,27 @@ def paraphrase_with_spacy_nltk(text):
|
|
| 146 |
else:
|
| 147 |
paraphrased_words.append(token.text)
|
| 148 |
|
| 149 |
-
|
|
|
|
|
|
|
|
|
|
| 150 |
|
| 151 |
# Combined function: Paraphrase -> Grammar Correction -> Capitalization (Humanifier)
|
| 152 |
def paraphrase_and_correct(text):
|
| 153 |
# Step 1: Paraphrase the text
|
| 154 |
paraphrased_text = paraphrase_with_spacy_nltk(text)
|
| 155 |
|
| 156 |
-
# Step 2: Apply grammatical corrections
|
| 157 |
-
corrected_text =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
|
| 159 |
-
return
|
| 160 |
|
| 161 |
# Gradio app setup with two tabs
|
| 162 |
with gr.Blocks() as demo:
|
|
@@ -166,14 +164,16 @@ with gr.Blocks() as demo:
|
|
| 166 |
label1 = gr.Textbox(lines=1, label='Predicted Label 🎃')
|
| 167 |
score1 = gr.Textbox(lines=1, label='Prob')
|
| 168 |
|
|
|
|
| 169 |
button1.click(predict_en, inputs=[t1], outputs=[label1, score1], api_name='predict_en')
|
| 170 |
|
| 171 |
with gr.Tab("Humanifier"):
|
| 172 |
text_input = gr.Textbox(lines=5, label="Input Text")
|
| 173 |
paraphrase_button = gr.Button("Paraphrase & Correct")
|
| 174 |
-
output_text = gr.Textbox(label="Paraphrased
|
| 175 |
|
|
|
|
| 176 |
paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text)
|
| 177 |
|
| 178 |
-
# Launch the app
|
| 179 |
-
demo.launch()
|
|
|
|
| 5 |
import subprocess
|
| 6 |
import nltk
|
| 7 |
from nltk.corpus import wordnet
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
# Initialize the English text classification pipeline for AI detection
|
| 10 |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
|
|
|
| 51 |
|
| 52 |
return ' '.join(corrected_text)
|
| 53 |
|
| 54 |
+
# Function to correct tense errors in a sentence (Tense Correction)
|
| 55 |
def correct_tense_errors(text):
|
| 56 |
doc = nlp(text)
|
| 57 |
corrected_text = []
|
|
|
|
| 58 |
for token in doc:
|
| 59 |
+
# Check for tense correction based on modal verbs
|
| 60 |
+
if token.pos_ == "VERB" and token.dep_ in {"aux", "auxpass"}:
|
| 61 |
+
# Replace with appropriate verb form
|
| 62 |
+
lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text
|
| 63 |
+
corrected_text.append(lemma)
|
| 64 |
else:
|
| 65 |
corrected_text.append(token.text)
|
|
|
|
| 66 |
return ' '.join(corrected_text)
|
| 67 |
|
| 68 |
+
# Function to correct singular/plural errors (Singular/Plural Correction)
|
| 69 |
def correct_singular_plural_errors(text):
|
| 70 |
doc = nlp(text)
|
| 71 |
corrected_text = []
|
| 72 |
+
|
| 73 |
for token in doc:
|
| 74 |
if token.pos_ == "NOUN":
|
| 75 |
+
# Check if the noun is singular or plural
|
| 76 |
if token.tag_ == "NN": # Singular noun
|
| 77 |
+
# Look for determiners like "many" to correct to plural
|
| 78 |
+
if any(child.text.lower() in ['many', 'several', 'few'] for child in token.head.children):
|
| 79 |
+
corrected_text.append(token.lemma_ + 's')
|
| 80 |
+
else:
|
| 81 |
+
corrected_text.append(token.text)
|
| 82 |
elif token.tag_ == "NNS": # Plural noun
|
| 83 |
+
# Look for determiners like "a", "one" to correct to singular
|
| 84 |
+
if any(child.text.lower() in ['a', 'one'] for child in token.head.children):
|
| 85 |
+
corrected_text.append(token.lemma_)
|
| 86 |
+
else:
|
| 87 |
+
corrected_text.append(token.text)
|
| 88 |
+
else:
|
| 89 |
+
corrected_text.append(token.text)
|
| 90 |
else:
|
| 91 |
corrected_text.append(token.text)
|
| 92 |
+
|
| 93 |
return ' '.join(corrected_text)
|
| 94 |
|
| 95 |
+
# Function to check and correct article errors
|
| 96 |
+
def correct_article_errors(text):
|
| 97 |
+
doc = nlp(text)
|
| 98 |
+
corrected_text = []
|
| 99 |
+
for token in doc:
|
| 100 |
+
if token.text in ['a', 'an']:
|
| 101 |
+
next_token = token.nbor(1)
|
| 102 |
+
if token.text == "a" and next_token.text[0].lower() in "aeiou":
|
| 103 |
+
corrected_text.append("an")
|
| 104 |
+
elif token.text == "an" and next_token.text[0].lower() not in "aeiou":
|
| 105 |
+
corrected_text.append("a")
|
| 106 |
+
else:
|
| 107 |
+
corrected_text.append(token.text)
|
| 108 |
+
else:
|
| 109 |
+
corrected_text.append(token.text)
|
| 110 |
+
return ' '.join(corrected_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
# Paraphrasing function using SpaCy and NLTK (Humanifier)
|
| 113 |
def paraphrase_with_spacy_nltk(text):
|
|
|
|
| 134 |
else:
|
| 135 |
paraphrased_words.append(token.text)
|
| 136 |
|
| 137 |
+
# Join the words back into a sentence
|
| 138 |
+
paraphrased_sentence = ' '.join(paraphrased_words)
|
| 139 |
+
|
| 140 |
+
return paraphrased_sentence
|
| 141 |
|
| 142 |
# Combined function: Paraphrase -> Grammar Correction -> Capitalization (Humanifier)
|
| 143 |
def paraphrase_and_correct(text):
|
| 144 |
# Step 1: Paraphrase the text
|
| 145 |
paraphrased_text = paraphrase_with_spacy_nltk(text)
|
| 146 |
|
| 147 |
+
# Step 2: Apply grammatical corrections on the paraphrased text
|
| 148 |
+
corrected_text = correct_article_errors(paraphrased_text)
|
| 149 |
+
|
| 150 |
+
corrected_text = capitalize_sentences_and_nouns(corrected_text)
|
| 151 |
+
|
| 152 |
+
corrected_text = correct_singular_plural_errors(corrected_text)
|
| 153 |
+
|
| 154 |
+
# Step 3: Capitalize sentences and proper nouns (final correction step)
|
| 155 |
+
final_text = correct_tense_errors(corrected_text)
|
| 156 |
|
| 157 |
+
return final_text
|
| 158 |
|
| 159 |
# Gradio app setup with two tabs
|
| 160 |
with gr.Blocks() as demo:
|
|
|
|
| 164 |
label1 = gr.Textbox(lines=1, label='Predicted Label 🎃')
|
| 165 |
score1 = gr.Textbox(lines=1, label='Prob')
|
| 166 |
|
| 167 |
+
# Connect the prediction function to the button
|
| 168 |
button1.click(predict_en, inputs=[t1], outputs=[label1, score1], api_name='predict_en')
|
| 169 |
|
| 170 |
with gr.Tab("Humanifier"):
|
| 171 |
text_input = gr.Textbox(lines=5, label="Input Text")
|
| 172 |
paraphrase_button = gr.Button("Paraphrase & Correct")
|
| 173 |
+
output_text = gr.Textbox(label="Paraphrased Text")
|
| 174 |
|
| 175 |
+
# Connect the paraphrasing function to the button
|
| 176 |
paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text)
|
| 177 |
|
| 178 |
+
# Launch the app with the remaining functionalities
|
| 179 |
+
demo.launch()
|