Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,7 +6,6 @@ import subprocess
|
|
| 6 |
import nltk
|
| 7 |
from nltk.corpus import wordnet
|
| 8 |
from spellchecker import SpellChecker
|
| 9 |
-
import random # Import random for versatile synonym replacement
|
| 10 |
|
| 11 |
# Initialize the English text classification pipeline for AI detection
|
| 12 |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
|
@@ -30,7 +29,7 @@ def predict_en(text):
|
|
| 30 |
res = pipeline_en(text)[0]
|
| 31 |
return res['label'], res['score']
|
| 32 |
|
| 33 |
-
#
|
| 34 |
def get_synonyms_nltk(word, pos):
|
| 35 |
synsets = wordnet.synsets(word, pos=pos)
|
| 36 |
if synsets:
|
|
@@ -38,74 +37,6 @@ def get_synonyms_nltk(word, pos):
|
|
| 38 |
return [lemma.name() for lemma in lemmas]
|
| 39 |
return []
|
| 40 |
|
| 41 |
-
# Retain the structure of the input text (headings, paragraphs, line breaks)
|
| 42 |
-
def retain_structure(text):
|
| 43 |
-
lines = text.split("\n")
|
| 44 |
-
formatted_lines = []
|
| 45 |
-
|
| 46 |
-
for line in lines:
|
| 47 |
-
if line.strip().isupper(): # Heading if all caps
|
| 48 |
-
formatted_lines.append(f"# {line.strip()}") # Treat it as a heading
|
| 49 |
-
else:
|
| 50 |
-
formatted_lines.append(line) # Otherwise, it's a paragraph or normal text
|
| 51 |
-
|
| 52 |
-
return "\n".join(formatted_lines)
|
| 53 |
-
|
| 54 |
-
# Dynamic and versatile synonym replacement
|
| 55 |
-
def replace_with_synonym(token):
|
| 56 |
-
pos = None
|
| 57 |
-
if token.pos_ == "VERB":
|
| 58 |
-
pos = wordnet.VERB
|
| 59 |
-
elif token.pos_ == "NOUN":
|
| 60 |
-
pos = wordnet.NOUN
|
| 61 |
-
elif token.pos_ == "ADJ":
|
| 62 |
-
pos = wordnet.ADJ
|
| 63 |
-
elif token.pos_ == "ADV":
|
| 64 |
-
pos = wordnet.ADV
|
| 65 |
-
|
| 66 |
-
synonyms = get_synonyms_nltk(token.lemma_, pos)
|
| 67 |
-
|
| 68 |
-
if synonyms:
|
| 69 |
-
# Randomly choose a synonym to add more versatility
|
| 70 |
-
synonym = random.choice(synonyms)
|
| 71 |
-
if token.tag_ == "VBG": # Present participle (e.g., running)
|
| 72 |
-
synonym = synonym + 'ing'
|
| 73 |
-
elif token.tag_ == "VBD" or token.tag_ == "VBN": # Past tense or past participle
|
| 74 |
-
synonym = synonym + 'ed'
|
| 75 |
-
elif token.tag_ == "VBZ": # Third-person singular present
|
| 76 |
-
synonym = synonym + 's'
|
| 77 |
-
return synonym
|
| 78 |
-
return token.text
|
| 79 |
-
|
| 80 |
-
# Function to rephrase text and replace words with versatile synonyms
|
| 81 |
-
def rephrase_with_synonyms(text):
|
| 82 |
-
doc = nlp(text)
|
| 83 |
-
rephrased_text = []
|
| 84 |
-
|
| 85 |
-
for token in doc:
|
| 86 |
-
pos_tag = None
|
| 87 |
-
if token.pos_ == "NOUN":
|
| 88 |
-
pos_tag = wordnet.NOUN
|
| 89 |
-
elif token.pos_ == "VERB":
|
| 90 |
-
pos_tag = wordnet.VERB
|
| 91 |
-
elif token.pos_ == "ADJ":
|
| 92 |
-
pos_tag = wordnet.ADJ
|
| 93 |
-
elif token.pos_ == "ADV":
|
| 94 |
-
pos_tag = wordnet.ADV
|
| 95 |
-
|
| 96 |
-
if pos_tag:
|
| 97 |
-
synonyms = get_synonyms_nltk(token.text, pos_tag)
|
| 98 |
-
if synonyms:
|
| 99 |
-
# Use the dynamic synonym replacement for versatility
|
| 100 |
-
synonym = replace_with_synonym(token)
|
| 101 |
-
rephrased_text.append(synonym)
|
| 102 |
-
else:
|
| 103 |
-
rephrased_text.append(token.text)
|
| 104 |
-
else:
|
| 105 |
-
rephrased_text.append(token.text)
|
| 106 |
-
|
| 107 |
-
return ' '.join(rephrased_text)
|
| 108 |
-
|
| 109 |
# Function to remove redundant and meaningless words
|
| 110 |
def remove_redundant_words(text):
|
| 111 |
doc = nlp(text)
|
|
@@ -131,26 +62,12 @@ def capitalize_sentences_and_nouns(text):
|
|
| 131 |
|
| 132 |
return ' '.join(corrected_text)
|
| 133 |
|
| 134 |
-
# Function to force capitalization of the first letter of every sentence
|
| 135 |
def force_first_letter_capital(text):
|
| 136 |
sentences = text.split(". ") # Split by period to get each sentence
|
| 137 |
capitalized_sentences = [sentence[0].capitalize() + sentence[1:] if sentence else "" for sentence in sentences]
|
| 138 |
return ". ".join(capitalized_sentences)
|
| 139 |
|
| 140 |
-
# Function to handle possessive 's and retain original meaning
|
| 141 |
-
def handle_possessives(text):
|
| 142 |
-
doc = nlp(text)
|
| 143 |
-
corrected_text = []
|
| 144 |
-
|
| 145 |
-
for token in doc:
|
| 146 |
-
# If token is a possessive form (e.g., 'Earth's'), retain its original form
|
| 147 |
-
if token.text.endswith("'s") or token.text == "'s":
|
| 148 |
-
corrected_text.append(token.text) # Keep it as is, even if a synonym is found
|
| 149 |
-
else:
|
| 150 |
-
corrected_text.append(token.text)
|
| 151 |
-
|
| 152 |
-
return ' '.join(corrected_text)
|
| 153 |
-
|
| 154 |
# Function to correct tense errors in a sentence
|
| 155 |
def correct_tense_errors(text):
|
| 156 |
doc = nlp(text)
|
|
@@ -202,6 +119,31 @@ def correct_article_errors(text):
|
|
| 202 |
corrected_text.append(token.text)
|
| 203 |
return ' '.join(corrected_text)
|
| 204 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
# Function to check for and avoid double negatives
|
| 206 |
def correct_double_negatives(text):
|
| 207 |
doc = nlp(text)
|
|
@@ -226,25 +168,56 @@ def ensure_subject_verb_agreement(text):
|
|
| 226 |
corrected_text.append(token.text)
|
| 227 |
return ' '.join(corrected_text)
|
| 228 |
|
| 229 |
-
# Function to correct spelling errors
|
| 230 |
def correct_spelling(text):
|
| 231 |
words = text.split()
|
| 232 |
corrected_words = []
|
| 233 |
for word in words:
|
| 234 |
corrected_word = spell.correction(word)
|
| 235 |
-
# If spell.correction returns None, use the original word
|
| 236 |
-
if corrected_word is None:
|
| 237 |
-
corrected_word = word
|
| 238 |
corrected_words.append(corrected_word)
|
| 239 |
return ' '.join(corrected_words)
|
| 240 |
|
| 241 |
-
# Function to
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
def paraphrase_and_correct(text):
|
| 243 |
-
# Retain the structure (headings, paragraphs, line breaks)
|
| 244 |
-
structured_text = retain_structure(text)
|
| 245 |
-
|
| 246 |
# Remove meaningless or redundant words first
|
| 247 |
-
cleaned_text = remove_redundant_words(
|
| 248 |
|
| 249 |
# Capitalize sentences and nouns
|
| 250 |
paraphrased_text = capitalize_sentences_and_nouns(cleaned_text)
|
|
@@ -252,9 +225,6 @@ def paraphrase_and_correct(text):
|
|
| 252 |
# Ensure first letter of each sentence is capitalized
|
| 253 |
paraphrased_text = force_first_letter_capital(paraphrased_text)
|
| 254 |
|
| 255 |
-
# Handle possessives properly
|
| 256 |
-
paraphrased_text = handle_possessives(paraphrased_text)
|
| 257 |
-
|
| 258 |
# Apply grammatical corrections
|
| 259 |
paraphrased_text = correct_article_errors(paraphrased_text)
|
| 260 |
paraphrased_text = correct_singular_plural_errors(paraphrased_text)
|
|
@@ -262,7 +232,7 @@ def paraphrase_and_correct(text):
|
|
| 262 |
paraphrased_text = correct_double_negatives(paraphrased_text)
|
| 263 |
paraphrased_text = ensure_subject_verb_agreement(paraphrased_text)
|
| 264 |
|
| 265 |
-
# Rephrase with
|
| 266 |
paraphrased_text = rephrase_with_synonyms(paraphrased_text)
|
| 267 |
|
| 268 |
# Correct spelling errors
|
|
|
|
| 6 |
import nltk
|
| 7 |
from nltk.corpus import wordnet
|
| 8 |
from spellchecker import SpellChecker
|
|
|
|
| 9 |
|
| 10 |
# Initialize the English text classification pipeline for AI detection
|
| 11 |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
|
|
|
| 29 |
res = pipeline_en(text)[0]
|
| 30 |
return res['label'], res['score']
|
| 31 |
|
| 32 |
+
# Function to get synonyms using NLTK WordNet
|
| 33 |
def get_synonyms_nltk(word, pos):
|
| 34 |
synsets = wordnet.synsets(word, pos=pos)
|
| 35 |
if synsets:
|
|
|
|
| 37 |
return [lemma.name() for lemma in lemmas]
|
| 38 |
return []
|
| 39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
# Function to remove redundant and meaningless words
|
| 41 |
def remove_redundant_words(text):
|
| 42 |
doc = nlp(text)
|
|
|
|
| 62 |
|
| 63 |
return ' '.join(corrected_text)
|
| 64 |
|
| 65 |
+
# Function to force capitalization of the first letter of every sentence (NEW)
|
| 66 |
def force_first_letter_capital(text):
|
| 67 |
sentences = text.split(". ") # Split by period to get each sentence
|
| 68 |
capitalized_sentences = [sentence[0].capitalize() + sentence[1:] if sentence else "" for sentence in sentences]
|
| 69 |
return ". ".join(capitalized_sentences)
|
| 70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
# Function to correct tense errors in a sentence
|
| 72 |
def correct_tense_errors(text):
|
| 73 |
doc = nlp(text)
|
|
|
|
| 119 |
corrected_text.append(token.text)
|
| 120 |
return ' '.join(corrected_text)
|
| 121 |
|
| 122 |
+
# Function to get the correct synonym while maintaining verb form
|
| 123 |
+
def replace_with_synonym(token):
|
| 124 |
+
pos = None
|
| 125 |
+
if token.pos_ == "VERB":
|
| 126 |
+
pos = wordnet.VERB
|
| 127 |
+
elif token.pos_ == "NOUN":
|
| 128 |
+
pos = wordnet.NOUN
|
| 129 |
+
elif token.pos_ == "ADJ":
|
| 130 |
+
pos = wordnet.ADJ
|
| 131 |
+
elif token.pos_ == "ADV":
|
| 132 |
+
pos = wordnet.ADV
|
| 133 |
+
|
| 134 |
+
synonyms = get_synonyms_nltk(token.lemma_, pos)
|
| 135 |
+
|
| 136 |
+
if synonyms:
|
| 137 |
+
synonym = synonyms[0]
|
| 138 |
+
if token.tag_ == "VBG": # Present participle (e.g., running)
|
| 139 |
+
synonym = synonym + 'ing'
|
| 140 |
+
elif token.tag_ == "VBD" or token.tag_ == "VBN": # Past tense or past participle
|
| 141 |
+
synonym = synonym + 'ed'
|
| 142 |
+
elif token.tag_ == "VBZ": # Third-person singular present
|
| 143 |
+
synonym = synonym + 's'
|
| 144 |
+
return synonym
|
| 145 |
+
return token.text
|
| 146 |
+
|
| 147 |
# Function to check for and avoid double negatives
|
| 148 |
def correct_double_negatives(text):
|
| 149 |
doc = nlp(text)
|
|
|
|
| 168 |
corrected_text.append(token.text)
|
| 169 |
return ' '.join(corrected_text)
|
| 170 |
|
| 171 |
+
# Function to correct spelling errors
|
| 172 |
def correct_spelling(text):
|
| 173 |
words = text.split()
|
| 174 |
corrected_words = []
|
| 175 |
for word in words:
|
| 176 |
corrected_word = spell.correction(word)
|
|
|
|
|
|
|
|
|
|
| 177 |
corrected_words.append(corrected_word)
|
| 178 |
return ' '.join(corrected_words)
|
| 179 |
|
| 180 |
+
# Function to rephrase text and replace words with their synonyms while maintaining form
|
| 181 |
+
def rephrase_with_synonyms(text):
|
| 182 |
+
doc = nlp(text)
|
| 183 |
+
rephrased_text = []
|
| 184 |
+
|
| 185 |
+
for token in doc:
|
| 186 |
+
pos_tag = None
|
| 187 |
+
if token.pos_ == "NOUN":
|
| 188 |
+
pos_tag = wordnet.NOUN
|
| 189 |
+
elif token.pos_ == "VERB":
|
| 190 |
+
pos_tag = wordnet.VERB
|
| 191 |
+
elif token.pos_ == "ADJ":
|
| 192 |
+
pos_tag = wordnet.ADJ
|
| 193 |
+
elif token.pos_ == "ADV":
|
| 194 |
+
pos_tag = wordnet.ADV
|
| 195 |
+
|
| 196 |
+
if pos_tag:
|
| 197 |
+
synonyms = get_synonyms_nltk(token.text, pos_tag)
|
| 198 |
+
if synonyms:
|
| 199 |
+
synonym = synonyms[0] # Just using the first synonym for simplicity
|
| 200 |
+
if token.pos_ == "VERB":
|
| 201 |
+
if token.tag_ == "VBG": # Present participle (e.g., running)
|
| 202 |
+
synonym = synonym + 'ing'
|
| 203 |
+
elif token.tag_ == "VBD" or token.tag_ == "VBN": # Past tense or past participle
|
| 204 |
+
synonym = synonym + 'ed'
|
| 205 |
+
elif token.tag_ == "VBZ": # Third-person singular present
|
| 206 |
+
synonym = synonym + 's'
|
| 207 |
+
elif token.pos_ == "NOUN" and token.tag_ == "NNS": # Plural nouns
|
| 208 |
+
synonym += 's' if not synonym.endswith('s') else ""
|
| 209 |
+
rephrased_text.append(synonym)
|
| 210 |
+
else:
|
| 211 |
+
rephrased_text.append(token.text)
|
| 212 |
+
else:
|
| 213 |
+
rephrased_text.append(token.text)
|
| 214 |
+
|
| 215 |
+
return ' '.join(rephrased_text)
|
| 216 |
+
|
| 217 |
+
# Function to paraphrase and correct grammar with enhanced accuracy
|
| 218 |
def paraphrase_and_correct(text):
|
|
|
|
|
|
|
|
|
|
| 219 |
# Remove meaningless or redundant words first
|
| 220 |
+
cleaned_text = remove_redundant_words(text)
|
| 221 |
|
| 222 |
# Capitalize sentences and nouns
|
| 223 |
paraphrased_text = capitalize_sentences_and_nouns(cleaned_text)
|
|
|
|
| 225 |
# Ensure first letter of each sentence is capitalized
|
| 226 |
paraphrased_text = force_first_letter_capital(paraphrased_text)
|
| 227 |
|
|
|
|
|
|
|
|
|
|
| 228 |
# Apply grammatical corrections
|
| 229 |
paraphrased_text = correct_article_errors(paraphrased_text)
|
| 230 |
paraphrased_text = correct_singular_plural_errors(paraphrased_text)
|
|
|
|
| 232 |
paraphrased_text = correct_double_negatives(paraphrased_text)
|
| 233 |
paraphrased_text = ensure_subject_verb_agreement(paraphrased_text)
|
| 234 |
|
| 235 |
+
# Rephrase with synonyms while maintaining grammatical forms
|
| 236 |
paraphrased_text = rephrase_with_synonyms(paraphrased_text)
|
| 237 |
|
| 238 |
# Correct spelling errors
|