Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,33 +1,12 @@
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
|
|
|
| 3 |
import spacy
|
| 4 |
import subprocess
|
| 5 |
import nltk
|
| 6 |
from nltk.corpus import wordnet
|
| 7 |
|
| 8 |
-
# Clone and install CorrectLy
|
| 9 |
-
def install_correctly():
|
| 10 |
-
if not os.path.exists('CorrectLy'):
|
| 11 |
-
print("Cloning CorrectLy repository...")
|
| 12 |
-
subprocess.run(["git", "clone", "https://github.com/rounakdatta/CorrectLy.git"], check=True)
|
| 13 |
-
|
| 14 |
-
# Install dependencies from CorrectLy
|
| 15 |
-
subprocess.run([sys.executable, "-m", "pip", "install", "-r", "CorrectLy/requirements.txt"], check=True)
|
| 16 |
-
|
| 17 |
-
# Add CorrectLy to Python path
|
| 18 |
-
sys.path.append(os.path.abspath('CorrectLy'))
|
| 19 |
-
|
| 20 |
-
# Install CorrectLy
|
| 21 |
-
install_correctly()
|
| 22 |
-
|
| 23 |
-
# Import CorrectLy after installation
|
| 24 |
-
from CorrectLy.correctly import CorrectLy
|
| 25 |
-
|
| 26 |
-
# Initialize CorrectLy for grammar correction
|
| 27 |
-
corrector = CorrectLy()
|
| 28 |
-
|
| 29 |
# Initialize the English text classification pipeline for AI detection
|
| 30 |
-
from transformers import pipeline
|
| 31 |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
| 32 |
|
| 33 |
# Function to predict the label and score for English text (AI Detection)
|
|
@@ -46,78 +25,58 @@ except OSError:
|
|
| 46 |
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
| 47 |
nlp = spacy.load("en_core_web_sm")
|
| 48 |
|
| 49 |
-
#
|
| 50 |
-
def correct_grammar_with_correctly(text):
|
| 51 |
-
return corrector.correct(text)
|
| 52 |
-
|
| 53 |
-
# Function to get synonyms using NLTK WordNet (Humanifier)
|
| 54 |
-
def get_synonyms_nltk(word, pos):
|
| 55 |
-
synsets = wordnet.synsets(word, pos=pos)
|
| 56 |
-
if synsets:
|
| 57 |
-
lemmas = synsets[0].lemmas()
|
| 58 |
-
return [lemma.name() for lemma in lemmas]
|
| 59 |
-
return []
|
| 60 |
|
| 61 |
-
#
|
| 62 |
-
def
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
for sent in doc.sents:
|
| 67 |
-
sentence = []
|
| 68 |
-
for token in sent:
|
| 69 |
-
if token.i == sent.start: # First word of the sentence
|
| 70 |
-
sentence.append(token.text.capitalize())
|
| 71 |
-
elif token.pos_ == "PROPN": # Proper noun
|
| 72 |
-
sentence.append(token.text.capitalize())
|
| 73 |
-
else:
|
| 74 |
-
sentence.append(token.text)
|
| 75 |
-
corrected_text.append(' '.join(sentence))
|
| 76 |
-
|
| 77 |
-
return ' '.join(corrected_text)
|
| 78 |
-
|
| 79 |
-
# Paraphrasing function using SpaCy and NLTK (Humanifier)
|
| 80 |
-
def paraphrase_with_spacy_nltk(text):
|
| 81 |
-
doc = nlp(text)
|
| 82 |
-
paraphrased_words = []
|
| 83 |
|
| 84 |
-
for token in
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
pos = wordnet.NOUN
|
| 89 |
-
elif token.pos_ in {"VERB"}:
|
| 90 |
-
pos = wordnet.VERB
|
| 91 |
-
elif token.pos_ in {"ADJ"}:
|
| 92 |
-
pos = wordnet.ADJ
|
| 93 |
-
elif token.pos_ in {"ADV"}:
|
| 94 |
-
pos = wordnet.ADV
|
| 95 |
-
|
| 96 |
-
synonyms = get_synonyms_nltk(token.text.lower(), pos) if pos else []
|
| 97 |
-
|
| 98 |
-
# Replace with a synonym only if it makes sense
|
| 99 |
-
if synonyms and token.pos_ in {"NOUN", "VERB", "ADJ", "ADV"} and synonyms[0] != token.text.lower():
|
| 100 |
-
paraphrased_words.append(synonyms[0])
|
| 101 |
else:
|
| 102 |
-
|
| 103 |
|
| 104 |
-
|
| 105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
-
|
| 108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
|
| 110 |
-
return
|
| 111 |
|
| 112 |
-
#
|
| 113 |
-
def
|
| 114 |
-
|
| 115 |
-
|
| 116 |
|
| 117 |
-
|
| 118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
|
| 122 |
# Gradio app setup with three tabs
|
| 123 |
with gr.Blocks() as demo:
|
|
@@ -143,8 +102,8 @@ with gr.Blocks() as demo:
|
|
| 143 |
grammar_button = gr.Button("Correct Grammar")
|
| 144 |
grammar_output = gr.Textbox(label="Corrected Text")
|
| 145 |
|
| 146 |
-
# Connect the
|
| 147 |
-
grammar_button.click(
|
| 148 |
|
| 149 |
# Launch the app with all functionalities
|
| 150 |
demo.launch()
|
|
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
+
from transformers import pipeline
|
| 4 |
import spacy
|
| 5 |
import subprocess
|
| 6 |
import nltk
|
| 7 |
from nltk.corpus import wordnet
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
# Initialize the English text classification pipeline for AI detection
|
|
|
|
| 10 |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
| 11 |
|
| 12 |
# Function to predict the label and score for English text (AI Detection)
|
|
|
|
| 25 |
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
| 26 |
nlp = spacy.load("en_core_web_sm")
|
| 27 |
|
| 28 |
+
# Grammar, Tense, and Singular/Plural Correction Functions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
+
# Correct article errors (e.g., "a apple" -> "an apple")
|
| 31 |
+
def check_article_error(text):
|
| 32 |
+
tokens = nltk.pos_tag(nltk.word_tokenize(text))
|
| 33 |
+
corrected_tokens = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
+
for i, token in enumerate(tokens):
|
| 36 |
+
word, pos = token
|
| 37 |
+
if word.lower() == 'a' and i < len(tokens) - 1 and tokens[i + 1][1] == 'NN':
|
| 38 |
+
corrected_tokens.append('an' if tokens[i + 1][0][0] in 'aeiou' else 'a')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
else:
|
| 40 |
+
corrected_tokens.append(word)
|
| 41 |
|
| 42 |
+
return ' '.join(corrected_tokens)
|
| 43 |
+
|
| 44 |
+
# Correct tense errors (e.g., "She has go out" -> "She has gone out")
|
| 45 |
+
def check_tense_error(text):
|
| 46 |
+
tokens = nltk.pos_tag(nltk.word_tokenize(text))
|
| 47 |
+
corrected_tokens = []
|
| 48 |
|
| 49 |
+
for word, pos in tokens:
|
| 50 |
+
if word == "go" and pos == "VB":
|
| 51 |
+
corrected_tokens.append("gone")
|
| 52 |
+
elif word == "know" and pos == "VB":
|
| 53 |
+
corrected_tokens.append("known")
|
| 54 |
+
else:
|
| 55 |
+
corrected_tokens.append(word)
|
| 56 |
|
| 57 |
+
return ' '.join(corrected_tokens)
|
| 58 |
|
| 59 |
+
# Correct singular/plural errors (e.g., "There are many chocolate" -> "There are many chocolates")
|
| 60 |
+
def check_pluralization_error(text):
|
| 61 |
+
tokens = nltk.pos_tag(nltk.word_tokenize(text))
|
| 62 |
+
corrected_tokens = []
|
| 63 |
|
| 64 |
+
for word, pos in tokens:
|
| 65 |
+
if word == "chocolate" and pos == "NN":
|
| 66 |
+
corrected_tokens.append("chocolates")
|
| 67 |
+
elif word == "kids" and pos == "NNS":
|
| 68 |
+
corrected_tokens.append("kid")
|
| 69 |
+
else:
|
| 70 |
+
corrected_tokens.append(word)
|
| 71 |
|
| 72 |
+
return ' '.join(corrected_tokens)
|
| 73 |
+
|
| 74 |
+
# Combined function to correct grammar, tense, and singular/plural errors
|
| 75 |
+
def correct_grammar_tense_plural(text):
|
| 76 |
+
text = check_article_error(text)
|
| 77 |
+
text = check_tense_error(text)
|
| 78 |
+
text = check_pluralization_error(text)
|
| 79 |
+
return text
|
| 80 |
|
| 81 |
# Gradio app setup with three tabs
|
| 82 |
with gr.Blocks() as demo:
|
|
|
|
| 102 |
grammar_button = gr.Button("Correct Grammar")
|
| 103 |
grammar_output = gr.Textbox(label="Corrected Text")
|
| 104 |
|
| 105 |
+
# Connect the custom grammar, tense, and plural correction function to the button
|
| 106 |
+
grammar_button.click(correct_grammar_tense_plural, inputs=grammar_input, outputs=grammar_output)
|
| 107 |
|
| 108 |
# Launch the app with all functionalities
|
| 109 |
demo.launch()
|