Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,7 +6,6 @@ import subprocess
|
|
| 6 |
import nltk
|
| 7 |
from nltk.corpus import wordnet
|
| 8 |
from spellchecker import SpellChecker
|
| 9 |
-
import random # Import random for versatile synonym replacement
|
| 10 |
|
| 11 |
# Initialize the English text classification pipeline for AI detection
|
| 12 |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
|
@@ -30,7 +29,7 @@ def predict_en(text):
|
|
| 30 |
res = pipeline_en(text)[0]
|
| 31 |
return res['label'], res['score']
|
| 32 |
|
| 33 |
-
#
|
| 34 |
def get_synonyms_nltk(word, pos):
|
| 35 |
synsets = wordnet.synsets(word, pos=pos)
|
| 36 |
if synsets:
|
|
@@ -38,73 +37,23 @@ def get_synonyms_nltk(word, pos):
|
|
| 38 |
return [lemma.name() for lemma in lemmas]
|
| 39 |
return []
|
| 40 |
|
| 41 |
-
#
|
| 42 |
-
def
|
| 43 |
-
|
| 44 |
-
|
|
|
|
| 45 |
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
else:
|
| 50 |
-
formatted_lines.append(line) # Otherwise, it's a paragraph or normal text
|
| 51 |
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
if token.pos_ == "VERB":
|
| 58 |
-
pos = wordnet.VERB
|
| 59 |
-
elif token.pos_ == "NOUN":
|
| 60 |
-
pos = wordnet.NOUN
|
| 61 |
-
elif token.pos_ == "ADJ":
|
| 62 |
-
pos = wordnet.ADJ
|
| 63 |
-
elif token.pos_ == "ADV":
|
| 64 |
-
pos = wordnet.ADV
|
| 65 |
-
|
| 66 |
-
synonyms = get_synonyms_nltk(token.lemma_, pos)
|
| 67 |
|
| 68 |
-
|
| 69 |
-
# Randomly choose a synonym to add more versatility
|
| 70 |
-
synonym = random.choice(synonyms)
|
| 71 |
-
if token.tag_ == "VBG": # Present participle (e.g., running)
|
| 72 |
-
synonym = synonym + 'ing'
|
| 73 |
-
elif token.tag_ == "VBD" or token.tag_ == "VBN": # Past tense or past participle
|
| 74 |
-
synonym = synonym + 'ed'
|
| 75 |
-
elif token.tag_ == "VBZ": # Third-person singular present
|
| 76 |
-
synonym = synonym + 's'
|
| 77 |
-
return synonym
|
| 78 |
-
return token.text
|
| 79 |
-
|
| 80 |
-
# Function to rephrase text and replace words with versatile synonyms
|
| 81 |
-
def rephrase_with_synonyms(text):
|
| 82 |
-
doc = nlp(text)
|
| 83 |
-
rephrased_text = []
|
| 84 |
-
|
| 85 |
-
for token in doc:
|
| 86 |
-
pos_tag = None
|
| 87 |
-
if token.pos_ == "NOUN":
|
| 88 |
-
pos_tag = wordnet.NOUN
|
| 89 |
-
elif token.pos_ == "VERB":
|
| 90 |
-
pos_tag = wordnet.VERB
|
| 91 |
-
elif token.pos_ == "ADJ":
|
| 92 |
-
pos_tag = wordnet.ADJ
|
| 93 |
-
elif token.pos_ == "ADV":
|
| 94 |
-
pos_tag = wordnet.ADV
|
| 95 |
-
|
| 96 |
-
if pos_tag:
|
| 97 |
-
synonyms = get_synonyms_nltk(token.text, pos_tag)
|
| 98 |
-
if synonyms:
|
| 99 |
-
# Use the dynamic synonym replacement for versatility
|
| 100 |
-
synonym = replace_with_synonym(token)
|
| 101 |
-
rephrased_text.append(synonym)
|
| 102 |
-
else:
|
| 103 |
-
rephrased_text.append(token.text)
|
| 104 |
-
else:
|
| 105 |
-
rephrased_text.append(token.text)
|
| 106 |
-
|
| 107 |
-
return ' '.join(rephrased_text)
|
| 108 |
|
| 109 |
# Function to remove redundant and meaningless words
|
| 110 |
def remove_redundant_words(text):
|
|
@@ -202,6 +151,34 @@ def correct_article_errors(text):
|
|
| 202 |
corrected_text.append(token.text)
|
| 203 |
return ' '.join(corrected_text)
|
| 204 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
# Function to check for and avoid double negatives
|
| 206 |
def correct_double_negatives(text):
|
| 207 |
doc = nlp(text)
|
|
@@ -235,6 +212,56 @@ def correct_spelling(text):
|
|
| 235 |
corrected_words.append(corrected_word)
|
| 236 |
return ' '.join(corrected_words)
|
| 237 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
# Function to paraphrase and correct grammar with enhanced accuracy and retain structure
|
| 239 |
def paraphrase_and_correct(text):
|
| 240 |
# Retain the structure (headings, paragraphs, line breaks)
|
|
@@ -259,13 +286,16 @@ def paraphrase_and_correct(text):
|
|
| 259 |
paraphrased_text = correct_double_negatives(paraphrased_text)
|
| 260 |
paraphrased_text = ensure_subject_verb_agreement(paraphrased_text)
|
| 261 |
|
| 262 |
-
# Rephrase with
|
| 263 |
paraphrased_text = rephrase_with_synonyms(paraphrased_text)
|
| 264 |
|
| 265 |
# Correct spelling errors
|
| 266 |
paraphrased_text = correct_spelling(paraphrased_text)
|
| 267 |
|
| 268 |
-
|
|
|
|
|
|
|
|
|
|
| 269 |
|
| 270 |
# Gradio app setup with two tabs
|
| 271 |
with gr.Blocks() as demo:
|
|
@@ -279,8 +309,8 @@ with gr.Blocks() as demo:
|
|
| 279 |
button1.click(fn=predict_en, inputs=t1, outputs=[label1, score1])
|
| 280 |
|
| 281 |
with gr.Tab("Paraphrasing & Grammar Correction"):
|
| 282 |
-
t2 = gr.Textbox(lines=5, label='Enter text for
|
| 283 |
-
button2 = gr.Button("🔄
|
| 284 |
result2 = gr.Textbox(lines=5, label='Corrected Text')
|
| 285 |
|
| 286 |
# Connect the paraphrasing and correction function to the button
|
|
|
|
| 6 |
import nltk
|
| 7 |
from nltk.corpus import wordnet
|
| 8 |
from spellchecker import SpellChecker
|
|
|
|
| 9 |
|
| 10 |
# Initialize the English text classification pipeline for AI detection
|
| 11 |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
|
|
|
| 29 |
res = pipeline_en(text)[0]
|
| 30 |
return res['label'], res['score']
|
| 31 |
|
| 32 |
+
# Function to get synonyms using NLTK WordNet
|
| 33 |
def get_synonyms_nltk(word, pos):
|
| 34 |
synsets = wordnet.synsets(word, pos=pos)
|
| 35 |
if synsets:
|
|
|
|
| 37 |
return [lemma.name() for lemma in lemmas]
|
| 38 |
return []
|
| 39 |
|
| 40 |
+
# Function to dynamically select the most relevant synonym
|
| 41 |
+
def get_relevant_synonym(word, pos, context):
|
| 42 |
+
synonyms = get_synonyms_nltk(word, pos)
|
| 43 |
+
if not synonyms:
|
| 44 |
+
return word
|
| 45 |
|
| 46 |
+
# Basic relevance check: choose the synonym that appears most frequently in similar contexts
|
| 47 |
+
relevant_synonym = word
|
| 48 |
+
max_count = 0
|
|
|
|
|
|
|
| 49 |
|
| 50 |
+
for synonym in synonyms:
|
| 51 |
+
count = context.lower().count(synonym.lower())
|
| 52 |
+
if count > max_count:
|
| 53 |
+
max_count = count
|
| 54 |
+
relevant_synonym = synonym
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
+
return relevant_synonym
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
# Function to remove redundant and meaningless words
|
| 59 |
def remove_redundant_words(text):
|
|
|
|
| 151 |
corrected_text.append(token.text)
|
| 152 |
return ' '.join(corrected_text)
|
| 153 |
|
| 154 |
+
# Function to get the correct synonym while maintaining verb form
|
| 155 |
+
def replace_with_synonym(token, context):
|
| 156 |
+
pos = None
|
| 157 |
+
if token.pos_ == "VERB":
|
| 158 |
+
pos = wordnet.VERB
|
| 159 |
+
elif token.pos_ == "NOUN":
|
| 160 |
+
pos = wordnet.NOUN
|
| 161 |
+
elif token.pos_ == "ADJ":
|
| 162 |
+
pos = wordnet.ADJ
|
| 163 |
+
elif token.pos_ == "ADV":
|
| 164 |
+
pos = wordnet.ADV
|
| 165 |
+
|
| 166 |
+
synonyms = get_synonyms_nltk(token.lemma_, pos)
|
| 167 |
+
|
| 168 |
+
if synonyms:
|
| 169 |
+
synonym = get_relevant_synonym(token.text, pos, context)
|
| 170 |
+
if token.pos_ == "VERB":
|
| 171 |
+
if token.tag_ == "VBG": # Present participle (e.g., running)
|
| 172 |
+
synonym = synonym + 'ing'
|
| 173 |
+
elif token.tag_ == "VBD" or token.tag_ == "VBN": # Past tense or past participle
|
| 174 |
+
synonym = synonym + 'ed'
|
| 175 |
+
elif token.tag_ == "VBZ": # Third-person singular present
|
| 176 |
+
synonym = synonym + 's'
|
| 177 |
+
elif token.pos_ == "NOUN" and token.tag_ == "NNS": # Plural nouns
|
| 178 |
+
synonym += 's' if not synonym.endswith('s') else ""
|
| 179 |
+
return synonym
|
| 180 |
+
return token.text
|
| 181 |
+
|
| 182 |
# Function to check for and avoid double negatives
|
| 183 |
def correct_double_negatives(text):
|
| 184 |
doc = nlp(text)
|
|
|
|
| 212 |
corrected_words.append(corrected_word)
|
| 213 |
return ' '.join(corrected_words)
|
| 214 |
|
| 215 |
+
# Function to rephrase text and replace words with their synonyms while maintaining form
|
| 216 |
+
def rephrase_with_synonyms(text):
|
| 217 |
+
doc = nlp(text)
|
| 218 |
+
rephrased_text = []
|
| 219 |
+
|
| 220 |
+
for token in doc:
|
| 221 |
+
pos_tag = None
|
| 222 |
+
if token.pos_ == "NOUN":
|
| 223 |
+
pos_tag = wordnet.NOUN
|
| 224 |
+
elif token.pos_ == "VERB":
|
| 225 |
+
pos_tag = wordnet.VERB
|
| 226 |
+
elif token.pos_ == "ADJ":
|
| 227 |
+
pos_tag = wordnet.ADJ
|
| 228 |
+
elif token.pos_ == "ADV":
|
| 229 |
+
pos_tag = wordnet.ADV
|
| 230 |
+
|
| 231 |
+
if pos_tag:
|
| 232 |
+
synonyms = get_synonyms_nltk(token.text, pos_tag)
|
| 233 |
+
if synonyms:
|
| 234 |
+
synonym = get_relevant_synonym(token.text, pos_tag, text)
|
| 235 |
+
if token.pos_ == "VERB":
|
| 236 |
+
if token.tag_ == "VBG": # Present participle (e.g., running)
|
| 237 |
+
synonym = synonym + 'ing'
|
| 238 |
+
elif token.tag_ == "VBD" or token.tag_ == "VBN": # Past tense or past participle
|
| 239 |
+
synonym = synonym + 'ed'
|
| 240 |
+
elif token.tag_ == "VBZ": # Third-person singular present
|
| 241 |
+
synonym = synonym + 's'
|
| 242 |
+
elif token.pos_ == "NOUN" and token.tag_ == "NNS": # Plural nouns
|
| 243 |
+
synonym += 's' if not synonym.endswith('s') else ""
|
| 244 |
+
rephrased_text.append(synonym)
|
| 245 |
+
else:
|
| 246 |
+
rephrased_text.append(token.text)
|
| 247 |
+
else:
|
| 248 |
+
rephrased_text.append(token.text)
|
| 249 |
+
|
| 250 |
+
return ' '.join(rephrased_text)
|
| 251 |
+
|
| 252 |
+
# Function to retain the structure of the input text (headings, paragraphs, line breaks)
|
| 253 |
+
def retain_structure(text):
|
| 254 |
+
lines = text.split("\n")
|
| 255 |
+
formatted_lines = []
|
| 256 |
+
|
| 257 |
+
for line in lines:
|
| 258 |
+
if line.strip().isupper(): # Heading if all caps
|
| 259 |
+
formatted_lines.append(f"# {line.strip()}") # Treat it as a heading
|
| 260 |
+
else:
|
| 261 |
+
formatted_lines.append(line) # Otherwise, it's a paragraph or normal text
|
| 262 |
+
|
| 263 |
+
return "\n".join(formatted_lines)
|
| 264 |
+
|
| 265 |
# Function to paraphrase and correct grammar with enhanced accuracy and retain structure
|
| 266 |
def paraphrase_and_correct(text):
|
| 267 |
# Retain the structure (headings, paragraphs, line breaks)
|
|
|
|
| 286 |
paraphrased_text = correct_double_negatives(paraphrased_text)
|
| 287 |
paraphrased_text = ensure_subject_verb_agreement(paraphrased_text)
|
| 288 |
|
| 289 |
+
# Rephrase with synonyms while maintaining grammatical forms
|
| 290 |
paraphrased_text = rephrase_with_synonyms(paraphrased_text)
|
| 291 |
|
| 292 |
# Correct spelling errors
|
| 293 |
paraphrased_text = correct_spelling(paraphrased_text)
|
| 294 |
|
| 295 |
+
# Reapply the structure to the final output
|
| 296 |
+
final_output = retain_structure(paraphrased_text)
|
| 297 |
+
|
| 298 |
+
return final_output
|
| 299 |
|
| 300 |
# Gradio app setup with two tabs
|
| 301 |
with gr.Blocks() as demo:
|
|
|
|
| 309 |
button1.click(fn=predict_en, inputs=t1, outputs=[label1, score1])
|
| 310 |
|
| 311 |
with gr.Tab("Paraphrasing & Grammar Correction"):
|
| 312 |
+
t2 = gr.Textbox(lines=5, label='Enter text for Humanifying')
|
| 313 |
+
button2 = gr.Button("🔄 Humanifier")
|
| 314 |
result2 = gr.Textbox(lines=5, label='Corrected Text')
|
| 315 |
|
| 316 |
# Connect the paraphrasing and correction function to the button
|