Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,55 +6,32 @@ import subprocess
|
|
| 6 |
import nltk
|
| 7 |
from nltk.corpus import wordnet
|
| 8 |
|
| 9 |
-
#
|
| 10 |
-
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
| 11 |
-
|
| 12 |
-
# Ensure necessary NLTK data is downloaded for Humanifier
|
| 13 |
nltk.download('wordnet')
|
| 14 |
nltk.download('omw-1.4')
|
| 15 |
|
| 16 |
-
# Ensure the SpaCy model is installed
|
| 17 |
try:
|
| 18 |
nlp = spacy.load("en_core_web_sm")
|
| 19 |
except OSError:
|
| 20 |
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
| 21 |
nlp = spacy.load("en_core_web_sm")
|
| 22 |
|
| 23 |
-
#
|
| 24 |
-
|
| 25 |
-
corrected_text = []
|
| 26 |
-
for token in doc:
|
| 27 |
-
if token.dep_ == "nsubj": # Check if the token is a subject
|
| 28 |
-
subject = token
|
| 29 |
-
verb = token.head # Find the associated verb
|
| 30 |
-
if verb.tag_ in {"VBZ", "VBP"}: # Singular/plural verb forms
|
| 31 |
-
if subject.tag_ == "NNS" and verb.tag_ == "VBZ": # Plural subject with singular verb
|
| 32 |
-
corrected_text.append(verb.lemma_) # Convert verb to plural form
|
| 33 |
-
elif subject.tag_ == "NN" and verb.tag_ == "VBP": # Singular subject with plural verb
|
| 34 |
-
corrected_text.append(verb.lemma_ + 's') # Convert verb to singular form
|
| 35 |
-
else:
|
| 36 |
-
corrected_text.append(verb.text) # No correction needed
|
| 37 |
-
else:
|
| 38 |
-
corrected_text.append(verb.text)
|
| 39 |
-
corrected_text.append(token.text)
|
| 40 |
-
return ' '.join(corrected_text)
|
| 41 |
|
| 42 |
-
# Function to
|
| 43 |
-
def
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
else:
|
| 55 |
-
corrected_text.append(token.text)
|
| 56 |
-
|
| 57 |
-
return ' '.join(corrected_text)
|
| 58 |
|
| 59 |
# Paraphrasing function using SpaCy and NLTK (Humanifier)
|
| 60 |
def paraphrase_with_spacy_nltk(text):
|
|
@@ -81,34 +58,20 @@ def paraphrase_with_spacy_nltk(text):
|
|
| 81 |
else:
|
| 82 |
paraphrased_words.append(token.text)
|
| 83 |
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
# Combined function: Paraphrase -> Grammar Correction -> Capitalization (Humanifier)
|
| 87 |
def paraphrase_and_correct(text):
|
| 88 |
# Step 1: Paraphrase the text
|
| 89 |
paraphrased_text = paraphrase_with_spacy_nltk(text)
|
| 90 |
|
| 91 |
-
#
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
# Step 3: Apply grammatical corrections on the paraphrased text
|
| 95 |
-
corrected_text = correct_article_errors(doc)
|
| 96 |
-
|
| 97 |
-
corrected_text = capitalize_sentences_and_nouns(corrected_text)
|
| 98 |
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
corrected_text = correct_singular_plural_errors(nlp(corrected_text))
|
| 102 |
-
|
| 103 |
-
# Step 4: Capitalize sentences and proper nouns (final correction step)
|
| 104 |
-
final_text = correct_tense_errors(nlp(corrected_text))
|
| 105 |
-
|
| 106 |
-
return final_text
|
| 107 |
-
def predict_en(text):
|
| 108 |
-
prediction = pipeline_en(text)
|
| 109 |
-
label = prediction[0]['label']
|
| 110 |
-
score = prediction[0]['score']
|
| 111 |
-
return label, round(score, 4)
|
| 112 |
|
| 113 |
# Gradio app setup with two tabs
|
| 114 |
with gr.Blocks() as demo:
|
|
@@ -130,4 +93,4 @@ with gr.Blocks() as demo:
|
|
| 130 |
paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text)
|
| 131 |
|
| 132 |
# Launch the app with the remaining functionalities
|
| 133 |
-
demo.launch()
|
|
|
|
| 6 |
import nltk
|
| 7 |
from nltk.corpus import wordnet
|
| 8 |
|
| 9 |
+
# Ensure necessary NLTK data is downloaded
|
|
|
|
|
|
|
|
|
|
| 10 |
nltk.download('wordnet')
|
| 11 |
nltk.download('omw-1.4')
|
| 12 |
|
| 13 |
+
# Ensure the SpaCy model is installed
|
| 14 |
try:
|
| 15 |
nlp = spacy.load("en_core_web_sm")
|
| 16 |
except OSError:
|
| 17 |
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
| 18 |
nlp = spacy.load("en_core_web_sm")
|
| 19 |
|
| 20 |
+
# Initialize the English text classification pipeline for AI detection
|
| 21 |
+
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
+
# Function to predict the label and score for English text (AI Detection)
|
| 24 |
+
def predict_en(text):
|
| 25 |
+
res = pipeline_en(text)[0]
|
| 26 |
+
return res['label'], res['score']
|
| 27 |
+
|
| 28 |
+
# Function to get synonyms using NLTK WordNet (Humanifier)
|
| 29 |
+
def get_synonyms_nltk(word, pos):
|
| 30 |
+
synsets = wordnet.synsets(word, pos=pos)
|
| 31 |
+
if synsets:
|
| 32 |
+
lemmas = synsets[0].lemmas()
|
| 33 |
+
return [lemma.name() for lemma in lemmas]
|
| 34 |
+
return []
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
# Paraphrasing function using SpaCy and NLTK (Humanifier)
|
| 37 |
def paraphrase_with_spacy_nltk(text):
|
|
|
|
| 58 |
else:
|
| 59 |
paraphrased_words.append(token.text)
|
| 60 |
|
| 61 |
+
# Join the words back into a sentence
|
| 62 |
+
paraphrased_sentence = ' '.join(paraphrased_words)
|
| 63 |
+
|
| 64 |
+
return paraphrased_sentence
|
| 65 |
|
| 66 |
# Combined function: Paraphrase -> Grammar Correction -> Capitalization (Humanifier)
|
| 67 |
def paraphrase_and_correct(text):
|
| 68 |
# Step 1: Paraphrase the text
|
| 69 |
paraphrased_text = paraphrase_with_spacy_nltk(text)
|
| 70 |
|
| 71 |
+
# Additional steps (grammar correction, capitalization) can go here...
|
| 72 |
+
# For now, we'll return the paraphrased text as an example.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
+
return paraphrased_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
# Gradio app setup with two tabs
|
| 77 |
with gr.Blocks() as demo:
|
|
|
|
| 93 |
paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text)
|
| 94 |
|
| 95 |
# Launch the app with the remaining functionalities
|
| 96 |
+
demo.launch()
|