Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import numpy as np
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import torchvision.transforms.functional as TF
|
| 6 |
+
from matplotlib import colormaps
|
| 7 |
+
from transformers import AutoModel
|
| 8 |
+
|
| 9 |
+
# ----------------------------
|
| 10 |
+
# Configuration
|
| 11 |
+
# ----------------------------
|
| 12 |
+
# The model will be downloaded from the Hugging Face Hub
|
| 13 |
+
MODEL_ID = "facebook/dinov3-vith16plus-pretrain-lvd1689m"
|
| 14 |
+
PATCH_SIZE = 16
|
| 15 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 16 |
+
|
| 17 |
+
# Normalization constants
|
| 18 |
+
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
| 19 |
+
IMAGENET_STD = (0.229, 0.224, 0.225)
|
| 20 |
+
|
| 21 |
+
# ----------------------------
|
| 22 |
+
# Model Loading (runs once at startup)
|
| 23 |
+
# ----------------------------
|
| 24 |
+
def load_model_from_hub():
|
| 25 |
+
"""Loads the DINOv3 model from the Hugging Face Hub."""
|
| 26 |
+
print(f"Loading model '{MODEL_ID}' from Hugging Face Hub...")
|
| 27 |
+
try:
|
| 28 |
+
model = AutoModel.from_pretrained(MODEL_ID)
|
| 29 |
+
model.to(DEVICE).eval()
|
| 30 |
+
print(f"β
Model loaded successfully on device: {DEVICE}")
|
| 31 |
+
return model
|
| 32 |
+
except Exception as e:
|
| 33 |
+
print(f"β Failed to load model: {e}")
|
| 34 |
+
gr.Error(f"Could not load model from Hub: {e}")
|
| 35 |
+
return None
|
| 36 |
+
|
| 37 |
+
# Load the model globally when the app starts
|
| 38 |
+
model = load_model_from_hub()
|
| 39 |
+
|
| 40 |
+
# ----------------------------
|
| 41 |
+
# Helper Functions
|
| 42 |
+
# ----------------------------
|
| 43 |
+
def resize_to_grid(img: Image.Image, long_side: int, patch: int) -> torch.Tensor:
|
| 44 |
+
"""Resizes an image to dimensions that are multiples of the patch size."""
|
| 45 |
+
w, h = img.size
|
| 46 |
+
scale = long_side / max(h, w)
|
| 47 |
+
new_h = max(patch, int(round(h * scale)))
|
| 48 |
+
new_w = max(patch, int(round(w * scale)))
|
| 49 |
+
|
| 50 |
+
new_h = ((new_h + patch - 1) // patch) * patch
|
| 51 |
+
new_w = ((new_w + patch - 1) // patch) * patch
|
| 52 |
+
|
| 53 |
+
return TF.to_tensor(TF.resize(img.convert("RGB"), (new_h, new_w)))
|
| 54 |
+
|
| 55 |
+
def colorize(data: np.ndarray, cmap_name: str = 'viridis') -> Image.Image:
|
| 56 |
+
"""Converts a 2D numpy array to a colored PIL image."""
|
| 57 |
+
x = data.astype(np.float32)
|
| 58 |
+
x = (x - x.min()) / (x.max() - x.min() + 1e-8)
|
| 59 |
+
cmap = colormaps.get_cmap(cmap_name)
|
| 60 |
+
rgb = (cmap(x)[..., :3] * 255).astype(np.uint8)
|
| 61 |
+
return Image.fromarray(rgb)
|
| 62 |
+
|
| 63 |
+
def blend(base: Image.Image, heat: Image.Image, alpha: float) -> Image.Image:
|
| 64 |
+
"""Blends a heatmap onto a base image."""
|
| 65 |
+
base = base.convert("RGBA")
|
| 66 |
+
heat = heat.convert("RGBA")
|
| 67 |
+
return Image.blend(base, heat, alpha=alpha)
|
| 68 |
+
|
| 69 |
+
# ----------------------------
|
| 70 |
+
# Core Gradio Function
|
| 71 |
+
# ----------------------------
|
| 72 |
+
@torch.inference_mode()
|
| 73 |
+
def generate_pca_visuals(
|
| 74 |
+
image_pil: Image.Image,
|
| 75 |
+
resolution: int,
|
| 76 |
+
cmap_name: str,
|
| 77 |
+
overlay_alpha: float,
|
| 78 |
+
progress=gr.Progress(track_tqdm=True)
|
| 79 |
+
):
|
| 80 |
+
"""Main function to generate PCA visuals."""
|
| 81 |
+
if model is None:
|
| 82 |
+
raise gr.Error("DINOv3 model could not be loaded. Check the logs.")
|
| 83 |
+
if image_pil is None:
|
| 84 |
+
return None, None, "Please upload an image and click Generate.", None, None
|
| 85 |
+
|
| 86 |
+
# 1. Image Preprocessing
|
| 87 |
+
progress(0.2, desc="Resizing and preprocessing image...")
|
| 88 |
+
image_tensor = resize_to_grid(image_pil, resolution, PATCH_SIZE)
|
| 89 |
+
t_norm = TF.normalize(image_tensor, IMAGENET_MEAN, IMAGENET_STD).unsqueeze(0).to(DEVICE)
|
| 90 |
+
original_processed_image = TF.to_pil_image(image_tensor)
|
| 91 |
+
_, _, H, W = t_norm.shape
|
| 92 |
+
Hp, Wp = H // PATCH_SIZE, W // PATCH_SIZE
|
| 93 |
+
|
| 94 |
+
# 2. Feature Extraction
|
| 95 |
+
progress(0.5, desc="π¦ Extracting features with DINOv3...")
|
| 96 |
+
outputs = model(t_norm)
|
| 97 |
+
# The patch embeddings are in last_hidden_state, we skip the first token (CLS)
|
| 98 |
+
patch_embeddings = outputs.last_hidden_state.squeeze(0)[1:, :]
|
| 99 |
+
|
| 100 |
+
# 3. PCA Calculation
|
| 101 |
+
progress(0.8, desc="π¬ Performing PCA...")
|
| 102 |
+
X_centered = patch_embeddings.float() - patch_embeddings.float().mean(0, keepdim=True)
|
| 103 |
+
U, S, V = torch.pca_lowrank(X_centered, q=3, center=False)
|
| 104 |
+
|
| 105 |
+
# Stabilize the signs of the eigenvectors for deterministic output
|
| 106 |
+
for i in range(V.shape[1]):
|
| 107 |
+
max_abs_idx = torch.argmax(torch.abs(V[:, i]))
|
| 108 |
+
if V[max_abs_idx, i] < 0:
|
| 109 |
+
V[:, i] *= -1
|
| 110 |
+
|
| 111 |
+
scores = X_centered @ V[:, :3]
|
| 112 |
+
|
| 113 |
+
# 4. Explained Variance
|
| 114 |
+
total_variance = (X_centered ** 2).sum()
|
| 115 |
+
explained_variance = [float((s**2) / total_variance) for s in S]
|
| 116 |
+
variance_text = (
|
| 117 |
+
f"**π Explained Variance Ratios:**\n\n"
|
| 118 |
+
f"- **PC1:** {explained_variance[0]:.2%}\n"
|
| 119 |
+
f"- **PC2:** {explained_variance[1]:.2%}\n"
|
| 120 |
+
f"- **PC3:** {explained_variance[2]:.2%}"
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
# 5. Create Visualizations
|
| 124 |
+
pc1_map = scores[:, 0].reshape(Hp, Wp).cpu().numpy()
|
| 125 |
+
pc1_image_raw = colorize(pc1_map, cmap_name)
|
| 126 |
+
pc_rgb_map = scores.reshape(Hp, Wp, 3).cpu().numpy()
|
| 127 |
+
min_vals = pc_rgb_map.reshape(-1, 3).min(axis=0)
|
| 128 |
+
max_vals = pc_rgb_map.reshape(-1, 3).max(axis=0)
|
| 129 |
+
pc_rgb_map = (pc_rgb_map - min_vals) / (max_vals - min_vals + 1e-8)
|
| 130 |
+
pc_rgb_image_raw = Image.fromarray((pc_rgb_map * 255).astype(np.uint8))
|
| 131 |
+
|
| 132 |
+
target_size = original_processed_image.size
|
| 133 |
+
pc1_image_smooth = pc1_image_raw.resize(target_size, Image.Resampling.BICUBIC)
|
| 134 |
+
pc_rgb_image_smooth = pc_rgb_image_raw.resize(target_size, Image.Resampling.BICUBIC)
|
| 135 |
+
blended_image = blend(original_processed_image, pc1_image_smooth, overlay_alpha)
|
| 136 |
+
|
| 137 |
+
progress(1.0, desc="β
Done!")
|
| 138 |
+
return pc1_image_smooth, pc_rgb_image_smooth, variance_text, blended_image, original_processed_image
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
# ----------------------------
|
| 142 |
+
# Gradio Interface
|
| 143 |
+
# ----------------------------
|
| 144 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="DINOv3 PCA Explorer") as demo:
|
| 145 |
+
gr.Markdown(
|
| 146 |
+
"""
|
| 147 |
+
# π¦ DINOv3 PCA Explorer
|
| 148 |
+
Upload an image to visualize the principal components of its patch features.
|
| 149 |
+
This reveals the main axes of semantic variation within the image as understood by the model.
|
| 150 |
+
"""
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
with gr.Row():
|
| 154 |
+
with gr.Column(scale=2):
|
| 155 |
+
input_image = gr.Image(type="pil", label="Upload Image", value="https://picsum.photos/id/1011/800/600")
|
| 156 |
+
|
| 157 |
+
with gr.Accordion("βοΈ Visualization Controls", open=True):
|
| 158 |
+
resolution_slider = gr.Slider(
|
| 159 |
+
minimum=224, maximum=1024, value=512, step=16,
|
| 160 |
+
label="Processing Resolution",
|
| 161 |
+
info="Higher values capture more detail but are slower."
|
| 162 |
+
)
|
| 163 |
+
cmap_dropdown = gr.Dropdown(
|
| 164 |
+
['viridis', 'magma', 'inferno', 'plasma', 'cividis', 'jet'],
|
| 165 |
+
value='viridis',
|
| 166 |
+
label="Heatmap Colormap"
|
| 167 |
+
)
|
| 168 |
+
alpha_slider = gr.Slider(
|
| 169 |
+
minimum=0, maximum=1, value=0.5,
|
| 170 |
+
label="Overlay Opacity"
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
run_button = gr.Button("π Generate PCA Visuals", variant="primary")
|
| 174 |
+
|
| 175 |
+
with gr.Column(scale=3):
|
| 176 |
+
with gr.Tabs():
|
| 177 |
+
with gr.TabItem("πΌοΈ Overlay"):
|
| 178 |
+
gr.Markdown("Visualize the main heatmap blended with the original image.")
|
| 179 |
+
output_blended = gr.Image(label="PC1 Heatmap Overlay")
|
| 180 |
+
output_processed = gr.Image(label="Original Processed Image (at selected resolution)")
|
| 181 |
+
with gr.TabItem("π PCA Outputs"):
|
| 182 |
+
gr.Markdown("View the raw outputs of the Principal Component Analysis.")
|
| 183 |
+
output_pc1 = gr.Image(label="PC1 Heatmap (Smoothed)")
|
| 184 |
+
output_rgb = gr.Image(label="Top 3 PCs as RGB (Smoothed)")
|
| 185 |
+
output_variance = gr.Markdown(label="Explained Variance")
|
| 186 |
+
|
| 187 |
+
run_button.click(
|
| 188 |
+
fn=generate_pca_visuals,
|
| 189 |
+
inputs=[input_image, resolution_slider, cmap_dropdown, alpha_slider],
|
| 190 |
+
outputs=[output_pc1, output_rgb, output_variance, output_blended, output_processed]
|
| 191 |
+
)
|
| 192 |
+
|
| 193 |
+
if __name__ == "__main__":
|
| 194 |
+
demo.launch()
|