Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
import torch
|
| 2 |
import gradio as gr
|
| 3 |
import numpy as np
|
|
@@ -5,16 +6,18 @@ from PIL import Image
|
|
| 5 |
import torchvision.transforms.functional as TF
|
| 6 |
from matplotlib import colormaps
|
| 7 |
from transformers import AutoModel
|
|
|
|
| 8 |
|
| 9 |
# ----------------------------
|
| 10 |
# Configuration
|
| 11 |
# ----------------------------
|
| 12 |
# The model will be downloaded from the Hugging Face Hub
|
| 13 |
-
|
|
|
|
| 14 |
PATCH_SIZE = 16
|
| 15 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 16 |
|
| 17 |
-
# Normalization constants
|
| 18 |
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
| 19 |
IMAGENET_STD = (0.229, 0.224, 0.225)
|
| 20 |
|
|
@@ -25,14 +28,17 @@ def load_model_from_hub():
|
|
| 25 |
"""Loads the DINOv3 model from the Hugging Face Hub."""
|
| 26 |
print(f"Loading model '{MODEL_ID}' from Hugging Face Hub...")
|
| 27 |
try:
|
| 28 |
-
model
|
|
|
|
|
|
|
|
|
|
| 29 |
model.to(DEVICE).eval()
|
| 30 |
print(f"β
Model loaded successfully on device: {DEVICE}")
|
| 31 |
return model
|
| 32 |
except Exception as e:
|
| 33 |
print(f"β Failed to load model: {e}")
|
| 34 |
-
|
| 35 |
-
|
| 36 |
|
| 37 |
# Load the model globally when the app starts
|
| 38 |
model = load_model_from_hub()
|
|
@@ -79,7 +85,7 @@ def generate_pca_visuals(
|
|
| 79 |
):
|
| 80 |
"""Main function to generate PCA visuals."""
|
| 81 |
if model is None:
|
| 82 |
-
raise gr.Error("DINOv3 model
|
| 83 |
if image_pil is None:
|
| 84 |
return None, None, "Please upload an image and click Generate.", None, None
|
| 85 |
|
|
@@ -94,20 +100,24 @@ def generate_pca_visuals(
|
|
| 94 |
# 2. Feature Extraction
|
| 95 |
progress(0.5, desc="π¦ Extracting features with DINOv3...")
|
| 96 |
outputs = model(t_norm)
|
| 97 |
-
|
| 98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
# 3. PCA Calculation
|
| 101 |
progress(0.8, desc="π¬ Performing PCA...")
|
| 102 |
X_centered = patch_embeddings.float() - patch_embeddings.float().mean(0, keepdim=True)
|
| 103 |
U, S, V = torch.pca_lowrank(X_centered, q=3, center=False)
|
| 104 |
|
| 105 |
-
# Stabilize the signs of the eigenvectors for deterministic output
|
|
|
|
| 106 |
for i in range(V.shape[1]):
|
| 107 |
max_abs_idx = torch.argmax(torch.abs(V[:, i]))
|
| 108 |
if V[max_abs_idx, i] < 0:
|
| 109 |
V[:, i] *= -1
|
| 110 |
-
|
| 111 |
scores = X_centered @ V[:, :3]
|
| 112 |
|
| 113 |
# 4. Explained Variance
|
|
@@ -121,8 +131,10 @@ def generate_pca_visuals(
|
|
| 121 |
)
|
| 122 |
|
| 123 |
# 5. Create Visualizations
|
|
|
|
| 124 |
pc1_map = scores[:, 0].reshape(Hp, Wp).cpu().numpy()
|
| 125 |
pc1_image_raw = colorize(pc1_map, cmap_name)
|
|
|
|
| 126 |
pc_rgb_map = scores.reshape(Hp, Wp, 3).cpu().numpy()
|
| 127 |
min_vals = pc_rgb_map.reshape(-1, 3).min(axis=0)
|
| 128 |
max_vals = pc_rgb_map.reshape(-1, 3).max(axis=0)
|
|
@@ -137,7 +149,6 @@ def generate_pca_visuals(
|
|
| 137 |
progress(1.0, desc="β
Done!")
|
| 138 |
return pc1_image_smooth, pc_rgb_image_smooth, variance_text, blended_image, original_processed_image
|
| 139 |
|
| 140 |
-
|
| 141 |
# ----------------------------
|
| 142 |
# Gradio Interface
|
| 143 |
# ----------------------------
|
|
@@ -152,7 +163,8 @@ with gr.Blocks(theme=gr.themes.Soft(), title="DINOv3 PCA Explorer") as demo:
|
|
| 152 |
|
| 153 |
with gr.Row():
|
| 154 |
with gr.Column(scale=2):
|
| 155 |
-
|
|
|
|
| 156 |
|
| 157 |
with gr.Accordion("βοΈ Visualization Controls", open=True):
|
| 158 |
resolution_slider = gr.Slider(
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
import torch
|
| 3 |
import gradio as gr
|
| 4 |
import numpy as np
|
|
|
|
| 6 |
import torchvision.transforms.functional as TF
|
| 7 |
from matplotlib import colormaps
|
| 8 |
from transformers import AutoModel
|
| 9 |
+
import os
|
| 10 |
|
| 11 |
# ----------------------------
|
| 12 |
# Configuration
|
| 13 |
# ----------------------------
|
| 14 |
# The model will be downloaded from the Hugging Face Hub
|
| 15 |
+
# Using the specific revision that works well with transformers AutoModel
|
| 16 |
+
MODEL_ID = "facebook/dinov3-vith16plus"
|
| 17 |
PATCH_SIZE = 16
|
| 18 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 19 |
|
| 20 |
+
# Normalization constants (standard for ImageNet)
|
| 21 |
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
| 22 |
IMAGENET_STD = (0.229, 0.224, 0.225)
|
| 23 |
|
|
|
|
| 28 |
"""Loads the DINOv3 model from the Hugging Face Hub."""
|
| 29 |
print(f"Loading model '{MODEL_ID}' from Hugging Face Hub...")
|
| 30 |
try:
|
| 31 |
+
# Use your HF token if the model is gated
|
| 32 |
+
# You can set this as a secret in your Hugging Face Space settings
|
| 33 |
+
token = os.environ.get("HF_TOKEN")
|
| 34 |
+
model = AutoModel.from_pretrained(MODEL_ID, token=token, trust_remote_code=True)
|
| 35 |
model.to(DEVICE).eval()
|
| 36 |
print(f"β
Model loaded successfully on device: {DEVICE}")
|
| 37 |
return model
|
| 38 |
except Exception as e:
|
| 39 |
print(f"β Failed to load model: {e}")
|
| 40 |
+
# This will display an error message in the Gradio interface
|
| 41 |
+
raise gr.Error(f"Could not load model from Hub. If it's a gated model, ensure you have access and have set your HF_TOKEN secret in the Space settings. Error: {e}")
|
| 42 |
|
| 43 |
# Load the model globally when the app starts
|
| 44 |
model = load_model_from_hub()
|
|
|
|
| 85 |
):
|
| 86 |
"""Main function to generate PCA visuals."""
|
| 87 |
if model is None:
|
| 88 |
+
raise gr.Error("DINOv3 model is not available. Check the startup logs.")
|
| 89 |
if image_pil is None:
|
| 90 |
return None, None, "Please upload an image and click Generate.", None, None
|
| 91 |
|
|
|
|
| 100 |
# 2. Feature Extraction
|
| 101 |
progress(0.5, desc="π¦ Extracting features with DINOv3...")
|
| 102 |
outputs = model(t_norm)
|
| 103 |
+
|
| 104 |
+
# π‘ FIX: The model output includes a [CLS] token AND 4 register tokens.
|
| 105 |
+
# We must skip all of them (total 5) to get only the patch embeddings.
|
| 106 |
+
# The original code only skipped 1, causing the size mismatch.
|
| 107 |
+
n_special_tokens = 5 # 1 [CLS] token + 4 register tokens
|
| 108 |
+
patch_embeddings = outputs.last_hidden_state.squeeze(0)[n_special_tokens:, :]
|
| 109 |
|
| 110 |
# 3. PCA Calculation
|
| 111 |
progress(0.8, desc="π¬ Performing PCA...")
|
| 112 |
X_centered = patch_embeddings.float() - patch_embeddings.float().mean(0, keepdim=True)
|
| 113 |
U, S, V = torch.pca_lowrank(X_centered, q=3, center=False)
|
| 114 |
|
| 115 |
+
# π‘ IMPROVEMENT: Stabilize the signs of the eigenvectors for deterministic output.
|
| 116 |
+
# This prevents the colors from randomly inverting on different runs.
|
| 117 |
for i in range(V.shape[1]):
|
| 118 |
max_abs_idx = torch.argmax(torch.abs(V[:, i]))
|
| 119 |
if V[max_abs_idx, i] < 0:
|
| 120 |
V[:, i] *= -1
|
|
|
|
| 121 |
scores = X_centered @ V[:, :3]
|
| 122 |
|
| 123 |
# 4. Explained Variance
|
|
|
|
| 131 |
)
|
| 132 |
|
| 133 |
# 5. Create Visualizations
|
| 134 |
+
# This part should now work correctly as `scores` has the right shape (Hp*Wp, 3)
|
| 135 |
pc1_map = scores[:, 0].reshape(Hp, Wp).cpu().numpy()
|
| 136 |
pc1_image_raw = colorize(pc1_map, cmap_name)
|
| 137 |
+
|
| 138 |
pc_rgb_map = scores.reshape(Hp, Wp, 3).cpu().numpy()
|
| 139 |
min_vals = pc_rgb_map.reshape(-1, 3).min(axis=0)
|
| 140 |
max_vals = pc_rgb_map.reshape(-1, 3).max(axis=0)
|
|
|
|
| 149 |
progress(1.0, desc="β
Done!")
|
| 150 |
return pc1_image_smooth, pc_rgb_image_smooth, variance_text, blended_image, original_processed_image
|
| 151 |
|
|
|
|
| 152 |
# ----------------------------
|
| 153 |
# Gradio Interface
|
| 154 |
# ----------------------------
|
|
|
|
| 163 |
|
| 164 |
with gr.Row():
|
| 165 |
with gr.Column(scale=2):
|
| 166 |
+
# Added a default image URL for convenience
|
| 167 |
+
input_image = gr.Image(type="pil", label="Upload Image", value="https://images.squarespace-cdn.com/content/v1/607f89e638219e13eee71b1e/1684821560422-SD5V37BAG28BURTLIXUQ/michael-sum-LEpfefQf4rU-unsplash.jpg")
|
| 168 |
|
| 169 |
with gr.Accordion("βοΈ Visualization Controls", open=True):
|
| 170 |
resolution_slider = gr.Slider(
|