Spaces:
Running
Running
| # app.py | |
| import os | |
| import torch | |
| import torch.nn.functional as F | |
| import gradio as gr | |
| import numpy as np | |
| from PIL import Image, ImageDraw | |
| import torchvision.transforms.functional as TF | |
| # --- Robust colormap import (Matplotlib β₯3.5 and older versions) --- | |
| try: | |
| from matplotlib import colormaps as _mpl_colormaps | |
| def _get_cmap(name: str): | |
| return _mpl_colormaps[name] | |
| except Exception: | |
| import matplotlib.cm as _cm | |
| def _get_cmap(name: str): | |
| return _cm.get_cmap(name) | |
| from transformers import AutoModel # uses trust_remote_code for DINOv3 | |
| # ---------------------------- | |
| # Configuration | |
| # ---------------------------- | |
| # Default to smaller/faster ViT-S/16+; offer ViT-H/16+ as alternative. | |
| DEFAULT_MODEL_ID = "facebook/dinov3-vits16plus-pretrain-lvd1689m" | |
| ALT_MODEL_ID = "facebook/dinov3-vith16plus-pretrain-lvd1689m" | |
| AVAILABLE_MODELS = [DEFAULT_MODEL_ID, ALT_MODEL_ID] | |
| PATCH_SIZE = 16 | |
| DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
| # Normalization constants (standard for ImageNet) | |
| IMAGENET_MEAN = (0.485, 0.456, 0.406) | |
| IMAGENET_STD = (0.229, 0.224, 0.225) | |
| # ---------------------------- | |
| # Model Loading (Hugging Face Hub) with caching | |
| # ---------------------------- | |
| _model_cache = {} | |
| _current_model_id = None | |
| model = None # global reference used by extract_image_features() | |
| def load_model_from_hub(model_id: str): | |
| """Loads a DINOv3 model from the Hugging Face Hub.""" | |
| print(f"Loading model '{model_id}' from Hugging Face Hub...") | |
| try: | |
| token = os.environ.get("HF_TOKEN") # optional, for gated models | |
| mdl = AutoModel.from_pretrained(model_id, token=token, trust_remote_code=True) | |
| mdl.to(DEVICE).eval() | |
| print(f"β Model '{model_id}' loaded successfully on device: {DEVICE}") | |
| return mdl | |
| except Exception as e: | |
| print(f"β Failed to load model '{model_id}': {e}") | |
| raise gr.Error( | |
| f"Could not load model '{model_id}'. " | |
| "If the model is gated, please accept the terms on its Hugging Face page " | |
| "and set HF_TOKEN in your environment. " | |
| f"Original error: {e}" | |
| ) | |
| def get_model(model_id: str): | |
| """Return a cached model if available, otherwise load and cache it.""" | |
| if model_id in _model_cache: | |
| return _model_cache[model_id] | |
| mdl = load_model_from_hub(model_id) | |
| _model_cache[model_id] = mdl | |
| return mdl | |
| # Load default model at startup | |
| model = get_model(DEFAULT_MODEL_ID) | |
| _current_model_id = DEFAULT_MODEL_ID | |
| # ---------------------------- | |
| # Helper Functions (resize, viz) | |
| # ---------------------------- | |
| def resize_to_grid(img: Image.Image, long_side: int, patch: int) -> torch.Tensor: | |
| """ | |
| Resizes so max(h,w)=long_side (keeping aspect), then rounds each side UP to a multiple of 'patch'. | |
| Returns CHW float tensor in [0,1]. | |
| """ | |
| w, h = img.size | |
| scale = long_side / max(h, w) | |
| new_h = max(patch, int(round(h * scale))) | |
| new_w = max(patch, int(round(w * scale))) | |
| new_h = ((new_h + patch - 1) // patch) * patch | |
| new_w = ((new_w + patch - 1) // patch) * patch | |
| return TF.to_tensor(TF.resize(img.convert("RGB"), (new_h, new_w))) | |
| def colorize(sim_map_up: np.ndarray, cmap_name: str = "viridis") -> Image.Image: | |
| x = sim_map_up.astype(np.float32) | |
| x = (x - x.min()) / (x.max() - x.min() + 1e-6) | |
| rgb = (_get_cmap(cmap_name)(x)[..., :3] * 255).astype(np.uint8) | |
| return Image.fromarray(rgb) | |
| def blend(base: Image.Image, heat: Image.Image, alpha: float = 0.55) -> Image.Image: | |
| # Put alpha on heatmap and composite for a crisp overlay | |
| base = base.convert("RGBA") | |
| heat = heat.convert("RGBA") | |
| a = Image.new("L", heat.size, int(255 * alpha)) | |
| heat.putalpha(a) | |
| out = Image.alpha_composite(base, heat) | |
| return out.convert("RGB") | |
| def draw_crosshair(img: Image.Image, x: int, y: int, radius: int = None) -> Image.Image: | |
| r = radius if radius is not None else max(2, PATCH_SIZE // 2) | |
| out = img.copy() | |
| draw = ImageDraw.Draw(out) | |
| draw.line([(x - r, y), (x + r, y)], fill="red", width=3) | |
| draw.line([(x, y - r), (x, y + r)], fill="red", width=3) | |
| return out | |
| def draw_boxes(img: Image.Image, boxes, outline="yellow", width=3, labels=True): | |
| out = img.copy() | |
| draw = ImageDraw.Draw(out) | |
| for i, (x0, y0, x1, y1) in enumerate(boxes, start=1): | |
| draw.rectangle([x0, y0, x1, y1], outline=outline, width=width) | |
| if labels: | |
| tx, ty = x0 + 2, y0 + 2 | |
| draw.text((tx, ty), str(i), fill=outline) | |
| return out | |
| def patch_neighborhood_box(r: int, c: int, Hp: int, Wp: int, rad: int, patch: int = PATCH_SIZE): | |
| r0 = max(0, r - rad) | |
| r1 = min(Hp - 1, r + rad) | |
| c0 = max(0, c - rad) | |
| c1 = min(Wp - 1, c + rad) | |
| x0 = int(c0 * patch) | |
| y0 = int(r0 * patch) | |
| x1 = int((c1 + 1) * patch) - 1 | |
| y1 = int((r1 + 1) * patch) - 1 | |
| return (x0, y0, x1, y1) | |
| # ---------------------------- | |
| # Feature Extraction (using transformers) | |
| # ---------------------------- | |
| def extract_image_features(image_pil: Image.Image, target_long_side: int): | |
| """ | |
| Extracts patch features from an image using the loaded Hugging Face model. | |
| """ | |
| t = resize_to_grid(image_pil, target_long_side, PATCH_SIZE) | |
| t_norm = TF.normalize(t, IMAGENET_MEAN, IMAGENET_STD).unsqueeze(0).to(DEVICE) | |
| _, _, H, W = t_norm.shape | |
| Hp, Wp = H // PATCH_SIZE, W // PATCH_SIZE | |
| # Models output: [CLS] + 4 register tokens + patches | |
| outputs = model(t_norm) | |
| # Skip the 5 special tokens to get only patch embeddings | |
| n_special_tokens = 5 | |
| patch_embeddings = outputs.last_hidden_state.squeeze(0)[n_special_tokens:, :] | |
| # L2-normalize features for cosine similarity | |
| X = F.normalize(patch_embeddings, p=2, dim=-1) | |
| img_resized = TF.to_pil_image(t) | |
| return {"X": X, "Hp": Hp, "Wp": Wp, "img": img_resized} | |
| # ---------------------------- | |
| # Similarity inside the same image | |
| # ---------------------------- | |
| def click_to_similarity_in_same_image( | |
| state: dict, | |
| click_xy: tuple[int, int], | |
| exclude_radius_patches: int = 1, | |
| topk: int = 10, | |
| alpha: float = 0.55, | |
| cmap_name: str = "viridis", | |
| box_radius_patches: int = 4, | |
| ): | |
| if not state: | |
| return None, None, None, None | |
| X = state["X"] | |
| Hp, Wp = state["Hp"], state["Wp"] | |
| base_img = state["img"] | |
| img_w, img_h = base_img.size | |
| x_pix, y_pix = click_xy | |
| col = int(np.clip(x_pix // PATCH_SIZE, 0, Wp - 1)) | |
| row = int(np.clip(y_pix // PATCH_SIZE, 0, Hp - 1)) | |
| idx = row * Wp + col | |
| q = X[idx] | |
| sims = torch.matmul(X, q) | |
| sim_map = sims.view(Hp, Wp) | |
| if exclude_radius_patches > 0: | |
| rr, cc = torch.meshgrid( | |
| torch.arange(Hp, device=sims.device), | |
| torch.arange(Wp, device=sims.device), | |
| indexing="ij", | |
| ) | |
| mask = (torch.abs(rr - row) <= exclude_radius_patches) & (torch.abs(cc - col) <= exclude_radius_patches) | |
| sim_map = sim_map.masked_fill(mask, float("-inf")) | |
| sim_up = F.interpolate( | |
| sim_map.unsqueeze(0).unsqueeze(0), | |
| size=(img_h, img_w), | |
| mode="bicubic", | |
| align_corners=False, | |
| ).squeeze().detach().cpu().numpy() | |
| heatmap_pil = colorize(sim_up, cmap_name) | |
| overlay_pil = blend(base_img, heatmap_pil, alpha=alpha) | |
| overlay_boxes_pil = overlay_pil | |
| if topk and topk > 0: | |
| flat = sim_map.view(-1) | |
| valid = torch.isfinite(flat) | |
| if valid.any(): | |
| vals = flat.clone() | |
| vals[~valid] = -1e9 | |
| k = min(topk, int(valid.sum().item())) | |
| _, top_idx = torch.topk(vals, k=k, largest=True, sorted=True) | |
| boxes = [ | |
| patch_neighborhood_box( | |
| r, c, Hp, Wp, rad=int(box_radius_patches), patch=PATCH_SIZE | |
| ) | |
| for r, c in [divmod(j.item(), Wp) for j in top_idx] | |
| ] | |
| overlay_boxes_pil = draw_boxes(overlay_pil, boxes, outline="yellow", width=3, labels=True) | |
| marked_ref = draw_crosshair(base_img, x_pix, y_pix, radius=PATCH_SIZE // 2) | |
| return marked_ref, heatmap_pil, overlay_pil, overlay_boxes_pil | |
| # ---------------------------- | |
| # Gradio UI (Manual-only processing) | |
| # ---------------------------- | |
| with gr.Blocks(theme=gr.themes.Soft(), title="DINOv3 Single-Image Patch Similarity") as demo: | |
| gr.Markdown("π **Article by Sayed Mohamed:** [Paper Review: DINOv3 The New State of the Art in Self-Supervised Vision Models](https://medium.com/@elsayed_mohamed/paper-review-dinov3-the-new-state-of-the-art-in-self-supervised-vision-models-d337ee4bf9dc)") | |
| gr.Markdown("# π¦ DINOv3 Single-Image Patch Similarity") | |
| gr.Markdown("Upload one image, adjust settings, then press **βΆοΈ Start processing**. Click on the processed image to find similar regions.") | |
| app_state = gr.State() | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| input_image = gr.Image( | |
| label="Image (click anywhere after processing)", | |
| type="pil", | |
| value="https://images.squarespace-cdn.com/content/v1/607f89e638219e13eee71b1e/1684821560422-SD5V37BAG28BURTLIXUQ/michael-sum-LEpfefQf4rU-unsplash.jpg" | |
| ) | |
| target_long_side = gr.Slider( | |
| minimum=224, maximum=1024, value=768, step=16, | |
| label="Processing Resolution", | |
| info="Higher values = more detail but slower processing", | |
| ) | |
| with gr.Row(): | |
| alpha = gr.Slider(0.0, 1.0, value=0.55, step=0.05, label="Overlay opacity") | |
| cmap = gr.Dropdown( | |
| ["viridis", "magma", "plasma", "inferno", "turbo", "cividis"], | |
| value="viridis", label="Colormap", | |
| ) | |
| # Backbone selector (default = smaller/faster ViT-S/16+) | |
| model_choice = gr.Dropdown( | |
| choices=AVAILABLE_MODELS, | |
| value=DEFAULT_MODEL_ID, | |
| label="Backbone (DINOv3)", | |
| info="ViT-S/16+ is smaller & faster; ViT-H/16+ is larger.", | |
| ) | |
| # Start processing button (manual trigger) | |
| with gr.Row(): | |
| start_btn = gr.Button("βΆοΈ Start processing", variant="primary") | |
| with gr.Column(scale=1): | |
| exclude_r = gr.Slider(0, 10, value=0, step=1, label="Exclude radius (patches)") | |
| topk = gr.Slider(0, 200, value=20, step=1, label="Top-K boxes") | |
| box_radius = gr.Slider(0, 10, value=1, step=1, label="Box radius (patches)") | |
| with gr.Row(): | |
| marked_image = gr.Image(label="Click marker / Preview", interactive=False) | |
| heatmap_output = gr.Image(label="Similarity heatmap", interactive=False) | |
| with gr.Row(): | |
| overlay_output = gr.Image(label="Overlay (image β heatmap)", interactive=False) | |
| overlay_boxes_output = gr.Image(label="Overlay + top-K similar patch boxes", interactive=False) | |
| def _ensure_model(model_id: str): | |
| """Ensure the global 'model' matches the dropdown selection.""" | |
| global model, _current_model_id | |
| if model_id != _current_model_id: | |
| model = get_model(model_id) | |
| _current_model_id = model_id | |
| # Manual feature extraction (only runs on Start button) | |
| def _run_extraction(img: Image.Image, long_side: int, model_id: str, progress=gr.Progress(track_tqdm=True)): | |
| if img is None: | |
| return None, None | |
| _ensure_model(model_id) | |
| progress(0, desc="Extracting features...") | |
| st = extract_image_features(img, int(long_side)) | |
| progress(1, desc="Done!") | |
| return st["img"], st | |
| # Clicking on processed image to compute similarities | |
| def _on_click(st, a: float, m: str, excl: int, k: int, box_rad: int, evt: gr.SelectData): | |
| if not st or evt is None: | |
| return None, None, None, None | |
| return click_to_similarity_in_same_image( | |
| st, click_xy=evt.index, exclude_radius_patches=int(excl), | |
| topk=int(k), alpha=float(a), cmap_name=m, | |
| box_radius_patches=int(box_rad), | |
| ) | |
| # On image change: just preview and clear outputs/state (NO extraction) | |
| def _on_image_changed(img: Image.Image): | |
| if img is None: | |
| return None, None, None, None, None | |
| return img, None, None, None, None | |
| # ---------- Wiring (Manual mode) ---------- | |
| # Do NOT auto-run on upload/slider/model change or on app load. | |
| # Only the Start button triggers extraction. | |
| start_btn.click( | |
| _run_extraction, | |
| inputs=[input_image, target_long_side, model_choice], | |
| outputs=[marked_image, app_state], | |
| ) | |
| # When a new image is picked, show it as preview and clear old results. | |
| input_image.change( | |
| _on_image_changed, | |
| inputs=[input_image], | |
| outputs=[marked_image, app_state, heatmap_output, overlay_output, overlay_boxes_output], | |
| ) | |
| # Keep click handler the same. | |
| marked_image.select( | |
| _on_click, | |
| inputs=[app_state, alpha, cmap, exclude_r, topk, box_radius], | |
| outputs=[marked_image, heatmap_output, overlay_output, overlay_boxes_output], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |