Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
import os
|
| 2 |
import torch
|
| 3 |
import torch.nn.functional as F
|
|
@@ -5,59 +6,45 @@ import gradio as gr
|
|
| 5 |
import numpy as np
|
| 6 |
from PIL import Image, ImageDraw
|
| 7 |
import torchvision.transforms.functional as TF
|
| 8 |
-
from matplotlib import
|
| 9 |
from transformers import AutoModel
|
| 10 |
|
| 11 |
# ----------------------------
|
| 12 |
# Configuration
|
| 13 |
# ----------------------------
|
| 14 |
-
|
| 15 |
-
MODELS = {
|
| 16 |
-
"DINOv3 ViT-S+ (Small, Default)": "facebook/dinov3-vits16plus-pretrain-lvd1689m",
|
| 17 |
-
"DINOv3 ViT-H+ (Huge)": "facebook/dinov3-vith16plus-pretrain-lvd1689m",
|
| 18 |
-
}
|
| 19 |
-
DEFAULT_MODEL_NAME = "DINOv3 ViT-S+ (Small, Default)"
|
| 20 |
-
|
| 21 |
PATCH_SIZE = 16
|
| 22 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 23 |
|
| 24 |
-
# Normalization constants (standard for ImageNet)
|
| 25 |
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
| 26 |
IMAGENET_STD = (0.229, 0.224, 0.225)
|
| 27 |
|
| 28 |
-
# β Cache for loaded models to avoid re-downloading
|
| 29 |
-
model_cache = {}
|
| 30 |
-
|
| 31 |
# ----------------------------
|
| 32 |
# Model Loading (Hugging Face Hub)
|
| 33 |
# ----------------------------
|
| 34 |
-
def load_model_from_hub(
|
| 35 |
-
"""Loads
|
| 36 |
-
print(f"Loading model '{
|
| 37 |
try:
|
| 38 |
token = os.environ.get("HF_TOKEN")
|
| 39 |
-
model = AutoModel.from_pretrained(
|
| 40 |
model.to(DEVICE).eval()
|
| 41 |
print(f"β
Model loaded successfully on device: {DEVICE}")
|
| 42 |
return model
|
| 43 |
except Exception as e:
|
| 44 |
print(f"β Failed to load model: {e}")
|
| 45 |
raise gr.Error(
|
| 46 |
-
f"Could not load model '{
|
| 47 |
"This is a gated model. Please ensure you have accepted the terms on its Hugging Face page "
|
| 48 |
"and set your HF_TOKEN as a secret in your Space settings. "
|
| 49 |
f"Original error: {e}"
|
| 50 |
)
|
| 51 |
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
model_id = MODELS[model_name]
|
| 55 |
-
if model_id not in model_cache:
|
| 56 |
-
model_cache[model_id] = load_model_from_hub(model_id)
|
| 57 |
-
return model_cache[model_id]
|
| 58 |
|
| 59 |
# ----------------------------
|
| 60 |
-
# Helper Functions (resize, viz)
|
| 61 |
# ----------------------------
|
| 62 |
def resize_to_grid(img: Image.Image, long_side: int, patch: int) -> torch.Tensor:
|
| 63 |
w, h = img.size
|
|
@@ -77,10 +64,7 @@ def colorize(sim_map_up: np.ndarray, cmap_name: str = "viridis") -> Image.Image:
|
|
| 77 |
def blend(base: Image.Image, heat: Image.Image, alpha: float = 0.55) -> Image.Image:
|
| 78 |
base = base.convert("RGBA")
|
| 79 |
heat = heat.convert("RGBA")
|
| 80 |
-
|
| 81 |
-
heat.putalpha(a)
|
| 82 |
-
out = Image.alpha_composite(base, heat)
|
| 83 |
-
return out.convert("RGB")
|
| 84 |
|
| 85 |
def draw_crosshair(img: Image.Image, x: int, y: int, radius: int = None) -> Image.Image:
|
| 86 |
r = radius if radius is not None else max(2, PATCH_SIZE // 2)
|
|
@@ -112,31 +96,26 @@ def patch_neighborhood_box(r: int, c: int, Hp: int, Wp: int, rad: int, patch: in
|
|
| 112 |
return (x0, y0, x1, y1)
|
| 113 |
|
| 114 |
# ----------------------------
|
| 115 |
-
# Feature Extraction
|
| 116 |
# ----------------------------
|
| 117 |
@torch.inference_mode()
|
| 118 |
-
|
| 119 |
-
def extract_image_features(model, image_pil: Image.Image, target_long_side: int):
|
| 120 |
-
"""
|
| 121 |
-
Extracts patch features from an image using the loaded Hugging Face model.
|
| 122 |
-
"""
|
| 123 |
t = resize_to_grid(image_pil, target_long_side, PATCH_SIZE)
|
| 124 |
t_norm = TF.normalize(t, IMAGENET_MEAN, IMAGENET_STD).unsqueeze(0).to(DEVICE)
|
| 125 |
_, _, H, W = t_norm.shape
|
| 126 |
Hp, Wp = H // PATCH_SIZE, W // PATCH_SIZE
|
| 127 |
-
|
| 128 |
outputs = model(t_norm)
|
| 129 |
-
|
| 130 |
n_special_tokens = 5
|
| 131 |
patch_embeddings = outputs.last_hidden_state.squeeze(0)[n_special_tokens:, :]
|
| 132 |
-
|
| 133 |
X = F.normalize(patch_embeddings, p=2, dim=-1)
|
| 134 |
-
|
| 135 |
img_resized = TF.to_pil_image(t)
|
| 136 |
return {"X": X, "Hp": Hp, "Wp": Wp, "img": img_resized}
|
| 137 |
|
| 138 |
# ----------------------------
|
| 139 |
-
# Similarity
|
| 140 |
# ----------------------------
|
| 141 |
def click_to_similarity_in_same_image(
|
| 142 |
state: dict,
|
|
@@ -149,21 +128,17 @@ def click_to_similarity_in_same_image(
|
|
| 149 |
):
|
| 150 |
if not state:
|
| 151 |
return None, None, None, None
|
| 152 |
-
|
| 153 |
X = state["X"]
|
| 154 |
Hp, Wp = state["Hp"], state["Wp"]
|
| 155 |
base_img = state["img"]
|
| 156 |
img_w, img_h = base_img.size
|
| 157 |
-
|
| 158 |
x_pix, y_pix = click_xy
|
| 159 |
col = int(np.clip(x_pix // PATCH_SIZE, 0, Wp - 1))
|
| 160 |
row = int(np.clip(y_pix // PATCH_SIZE, 0, Hp - 1))
|
| 161 |
idx = row * Wp + col
|
| 162 |
-
|
| 163 |
q = X[idx]
|
| 164 |
sims = torch.matmul(X, q)
|
| 165 |
sim_map = sims.view(Hp, Wp)
|
| 166 |
-
|
| 167 |
if exclude_radius_patches > 0:
|
| 168 |
rr, cc = torch.meshgrid(
|
| 169 |
torch.arange(Hp, device=sims.device),
|
|
@@ -172,17 +147,14 @@ def click_to_similarity_in_same_image(
|
|
| 172 |
)
|
| 173 |
mask = (torch.abs(rr - row) <= exclude_radius_patches) & (torch.abs(cc - col) <= exclude_radius_patches)
|
| 174 |
sim_map = sim_map.masked_fill(mask, float("-inf"))
|
| 175 |
-
|
| 176 |
sim_up = F.interpolate(
|
| 177 |
sim_map.unsqueeze(0).unsqueeze(0),
|
| 178 |
size=(img_h, img_w),
|
| 179 |
mode="bicubic",
|
| 180 |
align_corners=False,
|
| 181 |
).squeeze().detach().cpu().numpy()
|
| 182 |
-
|
| 183 |
heatmap_pil = colorize(sim_up, cmap_name)
|
| 184 |
overlay_pil = blend(base_img, heatmap_pil, alpha=alpha)
|
| 185 |
-
|
| 186 |
overlay_boxes_pil = overlay_pil
|
| 187 |
if topk and topk > 0:
|
| 188 |
flat = sim_map.view(-1)
|
|
@@ -199,92 +171,82 @@ def click_to_similarity_in_same_image(
|
|
| 199 |
for r, c in [divmod(j.item(), Wp) for j in top_idx]
|
| 200 |
]
|
| 201 |
overlay_boxes_pil = draw_boxes(overlay_pil, boxes, outline="yellow", width=3, labels=True)
|
| 202 |
-
|
| 203 |
marked_ref = draw_crosshair(base_img, x_pix, y_pix, radius=PATCH_SIZE // 2)
|
| 204 |
return marked_ref, heatmap_pil, overlay_pil, overlay_boxes_pil
|
| 205 |
|
| 206 |
# ----------------------------
|
| 207 |
# Gradio UI
|
| 208 |
# ----------------------------
|
| 209 |
-
with gr.Blocks(theme=gr.themes.Soft(), title="DINOv3
|
| 210 |
-
gr.Markdown("# π¦ DINOv3
|
| 211 |
-
gr.Markdown(
|
| 212 |
-
|
| 213 |
-
|
|
|
|
|
|
|
| 214 |
app_state = gr.State()
|
| 215 |
-
|
| 216 |
with gr.Row():
|
| 217 |
-
with gr.Column(scale=
|
| 218 |
-
# β ADDED MODEL DROPDOWN
|
| 219 |
-
model_name_dd = gr.Dropdown(
|
| 220 |
-
label="1. Choose a Model",
|
| 221 |
-
choices=list(MODELS.keys()),
|
| 222 |
-
value=DEFAULT_MODEL_NAME,
|
| 223 |
-
)
|
| 224 |
input_image = gr.Image(
|
| 225 |
-
label="
|
| 226 |
type="pil",
|
| 227 |
value="https://images.squarespace-cdn.com/content/v1/607f89e638219e13eee71b1e/1684821560422-SD5V37BAG28BURTLIXUQ/michael-sum-LEpfefQf4rU-unsplash.jpg"
|
| 228 |
)
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
with gr.Row():
|
| 237 |
-
alpha = gr.Slider(0.0, 1.0, value=0.55, step=0.05, label="Overlay opacity")
|
| 238 |
cmap = gr.Dropdown(
|
| 239 |
["viridis", "magma", "plasma", "inferno", "turbo", "cividis"],
|
| 240 |
-
value="viridis", label="Colormap",
|
| 241 |
)
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
|
|
|
|
|
|
| 256 |
if img is None:
|
| 257 |
-
gr.Warning("Please upload an image first!")
|
| 258 |
return None, None
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
st = extract_image_features(model, img, int(long_side))
|
| 265 |
-
|
| 266 |
-
progress(1, desc="Done! You can now click on the image.")
|
| 267 |
-
return st["img"], st
|
| 268 |
|
| 269 |
def _on_click(st, a: float, m: str, excl: int, k: int, box_rad: int, evt: gr.SelectData):
|
| 270 |
if not st or evt is None:
|
| 271 |
-
|
| 272 |
-
return
|
| 273 |
-
|
|
|
|
| 274 |
st, click_xy=evt.index, exclude_radius_patches=int(excl),
|
| 275 |
topk=int(k), alpha=float(a), cmap_name=m,
|
| 276 |
box_radius_patches=int(box_rad),
|
| 277 |
)
|
|
|
|
| 278 |
|
| 279 |
-
#
|
| 280 |
-
|
| 281 |
-
|
| 282 |
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
outputs=outputs_for_processing
|
| 287 |
-
)
|
| 288 |
|
| 289 |
marked_image.select(
|
| 290 |
_on_click,
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
import os
|
| 3 |
import torch
|
| 4 |
import torch.nn.functional as F
|
|
|
|
| 6 |
import numpy as np
|
| 7 |
from PIL import Image, ImageDraw
|
| 8 |
import torchvision.transforms.functional as TF
|
| 9 |
+
from matplotlib import colormaps
|
| 10 |
from transformers import AutoModel
|
| 11 |
|
| 12 |
# ----------------------------
|
| 13 |
# Configuration
|
| 14 |
# ----------------------------
|
| 15 |
+
MODEL_ID = "facebook/dinov3-vith16plus-pretrain-lvd1689m"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
PATCH_SIZE = 16
|
| 17 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 18 |
|
|
|
|
| 19 |
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
| 20 |
IMAGENET_STD = (0.229, 0.224, 0.225)
|
| 21 |
|
|
|
|
|
|
|
|
|
|
| 22 |
# ----------------------------
|
| 23 |
# Model Loading (Hugging Face Hub)
|
| 24 |
# ----------------------------
|
| 25 |
+
def load_model_from_hub():
|
| 26 |
+
"""Loads the DINOv3 model from the Hugging Face Hub."""
|
| 27 |
+
print(f"Loading model '{MODEL_ID}' from Hugging Face Hub...")
|
| 28 |
try:
|
| 29 |
token = os.environ.get("HF_TOKEN")
|
| 30 |
+
model = AutoModel.from_pretrained(MODEL_ID, token=token, trust_remote_code=True)
|
| 31 |
model.to(DEVICE).eval()
|
| 32 |
print(f"β
Model loaded successfully on device: {DEVICE}")
|
| 33 |
return model
|
| 34 |
except Exception as e:
|
| 35 |
print(f"β Failed to load model: {e}")
|
| 36 |
raise gr.Error(
|
| 37 |
+
f"Could not load model '{MODEL_ID}'. "
|
| 38 |
"This is a gated model. Please ensure you have accepted the terms on its Hugging Face page "
|
| 39 |
"and set your HF_TOKEN as a secret in your Space settings. "
|
| 40 |
f"Original error: {e}"
|
| 41 |
)
|
| 42 |
|
| 43 |
+
# Load the model globally when the app starts
|
| 44 |
+
model = load_model_from_hub()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
# ----------------------------
|
| 47 |
+
# Helper Functions (resize, viz)
|
| 48 |
# ----------------------------
|
| 49 |
def resize_to_grid(img: Image.Image, long_side: int, patch: int) -> torch.Tensor:
|
| 50 |
w, h = img.size
|
|
|
|
| 64 |
def blend(base: Image.Image, heat: Image.Image, alpha: float = 0.55) -> Image.Image:
|
| 65 |
base = base.convert("RGBA")
|
| 66 |
heat = heat.convert("RGBA")
|
| 67 |
+
return Image.blend(base, heat, alpha=alpha)
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
def draw_crosshair(img: Image.Image, x: int, y: int, radius: int = None) -> Image.Image:
|
| 70 |
r = radius if radius is not None else max(2, PATCH_SIZE // 2)
|
|
|
|
| 96 |
return (x0, y0, x1, y1)
|
| 97 |
|
| 98 |
# ----------------------------
|
| 99 |
+
# Feature Extraction
|
| 100 |
# ----------------------------
|
| 101 |
@torch.inference_mode()
|
| 102 |
+
def extract_image_features(image_pil: Image.Image, target_long_side: int):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
t = resize_to_grid(image_pil, target_long_side, PATCH_SIZE)
|
| 104 |
t_norm = TF.normalize(t, IMAGENET_MEAN, IMAGENET_STD).unsqueeze(0).to(DEVICE)
|
| 105 |
_, _, H, W = t_norm.shape
|
| 106 |
Hp, Wp = H // PATCH_SIZE, W // PATCH_SIZE
|
| 107 |
+
|
| 108 |
outputs = model(t_norm)
|
| 109 |
+
|
| 110 |
n_special_tokens = 5
|
| 111 |
patch_embeddings = outputs.last_hidden_state.squeeze(0)[n_special_tokens:, :]
|
| 112 |
+
|
| 113 |
X = F.normalize(patch_embeddings, p=2, dim=-1)
|
|
|
|
| 114 |
img_resized = TF.to_pil_image(t)
|
| 115 |
return {"X": X, "Hp": Hp, "Wp": Wp, "img": img_resized}
|
| 116 |
|
| 117 |
# ----------------------------
|
| 118 |
+
# Similarity Logic
|
| 119 |
# ----------------------------
|
| 120 |
def click_to_similarity_in_same_image(
|
| 121 |
state: dict,
|
|
|
|
| 128 |
):
|
| 129 |
if not state:
|
| 130 |
return None, None, None, None
|
|
|
|
| 131 |
X = state["X"]
|
| 132 |
Hp, Wp = state["Hp"], state["Wp"]
|
| 133 |
base_img = state["img"]
|
| 134 |
img_w, img_h = base_img.size
|
|
|
|
| 135 |
x_pix, y_pix = click_xy
|
| 136 |
col = int(np.clip(x_pix // PATCH_SIZE, 0, Wp - 1))
|
| 137 |
row = int(np.clip(y_pix // PATCH_SIZE, 0, Hp - 1))
|
| 138 |
idx = row * Wp + col
|
|
|
|
| 139 |
q = X[idx]
|
| 140 |
sims = torch.matmul(X, q)
|
| 141 |
sim_map = sims.view(Hp, Wp)
|
|
|
|
| 142 |
if exclude_radius_patches > 0:
|
| 143 |
rr, cc = torch.meshgrid(
|
| 144 |
torch.arange(Hp, device=sims.device),
|
|
|
|
| 147 |
)
|
| 148 |
mask = (torch.abs(rr - row) <= exclude_radius_patches) & (torch.abs(cc - col) <= exclude_radius_patches)
|
| 149 |
sim_map = sim_map.masked_fill(mask, float("-inf"))
|
|
|
|
| 150 |
sim_up = F.interpolate(
|
| 151 |
sim_map.unsqueeze(0).unsqueeze(0),
|
| 152 |
size=(img_h, img_w),
|
| 153 |
mode="bicubic",
|
| 154 |
align_corners=False,
|
| 155 |
).squeeze().detach().cpu().numpy()
|
|
|
|
| 156 |
heatmap_pil = colorize(sim_up, cmap_name)
|
| 157 |
overlay_pil = blend(base_img, heatmap_pil, alpha=alpha)
|
|
|
|
| 158 |
overlay_boxes_pil = overlay_pil
|
| 159 |
if topk and topk > 0:
|
| 160 |
flat = sim_map.view(-1)
|
|
|
|
| 171 |
for r, c in [divmod(j.item(), Wp) for j in top_idx]
|
| 172 |
]
|
| 173 |
overlay_boxes_pil = draw_boxes(overlay_pil, boxes, outline="yellow", width=3, labels=True)
|
|
|
|
| 174 |
marked_ref = draw_crosshair(base_img, x_pix, y_pix, radius=PATCH_SIZE // 2)
|
| 175 |
return marked_ref, heatmap_pil, overlay_pil, overlay_boxes_pil
|
| 176 |
|
| 177 |
# ----------------------------
|
| 178 |
# Gradio UI
|
| 179 |
# ----------------------------
|
| 180 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="DINOv3 Patch Similarity") as demo:
|
| 181 |
+
gr.Markdown("# π¦ DINOv3: Visualizing Patch Similarity")
|
| 182 |
+
gr.Markdown(
|
| 183 |
+
"Upload an image, then **click anywhere** on it to find the most visually similar regions. "
|
| 184 |
+
"**Note:** If running on a CPU-only Space, feature extraction after uploading an image can take a moment."
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
app_state = gr.State()
|
| 188 |
+
|
| 189 |
with gr.Row():
|
| 190 |
+
with gr.Column(scale=2):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
input_image = gr.Image(
|
| 192 |
+
label="Image (click anywhere)",
|
| 193 |
type="pil",
|
| 194 |
value="https://images.squarespace-cdn.com/content/v1/607f89e638219e13eee71b1e/1684821560422-SD5V37BAG28BURTLIXUQ/michael-sum-LEpfefQf4rU-unsplash.jpg"
|
| 195 |
)
|
| 196 |
+
with gr.Accordion("βοΈ Visualization Controls", open=True):
|
| 197 |
+
target_long_side = gr.Slider(
|
| 198 |
+
minimum=224, maximum=1024, value=768, step=16,
|
| 199 |
+
label="Processing Resolution",
|
| 200 |
+
info="Higher values = more detail but slower processing",
|
| 201 |
+
)
|
| 202 |
+
alpha = gr.Slider(0.0, 1.0, value=0.55, step=0.05, label="Overlay Opacity")
|
|
|
|
|
|
|
| 203 |
cmap = gr.Dropdown(
|
| 204 |
["viridis", "magma", "plasma", "inferno", "turbo", "cividis"],
|
| 205 |
+
value="viridis", label="Heatmap Colormap",
|
| 206 |
)
|
| 207 |
+
with gr.Accordion("βοΈ Similarity Controls", open=True):
|
| 208 |
+
exclude_r = gr.Slider(0, 10, value=0, step=1, label="Exclude Radius (patches)", info="Ignore patches around the click point.")
|
| 209 |
+
topk = gr.Slider(0, 50, value=10, step=1, label="Top-K Boxes", info="Number of similar regions to highlight.")
|
| 210 |
+
box_radius = gr.Slider(0, 10, value=1, step=1, label="Box Radius (patches)", info="Size of the highlight box.")
|
| 211 |
+
|
| 212 |
+
with gr.Column(scale=3):
|
| 213 |
+
marked_image = gr.Image(label="Your Click (on processed image)", interactive=False)
|
| 214 |
+
with gr.Tabs():
|
| 215 |
+
with gr.TabItem("π¦ Bounding Boxes"):
|
| 216 |
+
overlay_boxes_output = gr.Image(label="Overlay + Top-K Similar Patches", interactive=False)
|
| 217 |
+
with gr.TabItem("π₯ Heatmap"):
|
| 218 |
+
heatmap_output = gr.Image(label="Similarity Heatmap", interactive=False)
|
| 219 |
+
with gr.TabItem(" blended"):
|
| 220 |
+
overlay_output = gr.Image(label="Blended Overlay (Image + Heatmap)", interactive=False)
|
| 221 |
+
|
| 222 |
+
def _on_upload_or_slider_change(img: Image.Image, long_side: int, progress=gr.Progress(track_tqdm=True)):
|
| 223 |
if img is None:
|
|
|
|
| 224 |
return None, None
|
| 225 |
+
progress(0, desc="π¦ Extracting DINOv3 features...")
|
| 226 |
+
st = extract_image_features(img, int(long_side))
|
| 227 |
+
progress(1, desc="β
Done!")
|
| 228 |
+
# Clear old results when a new image is uploaded
|
| 229 |
+
return st["img"], st, None, None, None, None
|
|
|
|
|
|
|
|
|
|
|
|
|
| 230 |
|
| 231 |
def _on_click(st, a: float, m: str, excl: int, k: int, box_rad: int, evt: gr.SelectData):
|
| 232 |
if not st or evt is None:
|
| 233 |
+
# Return current state if no click data
|
| 234 |
+
return st.get("img"), None, None, None
|
| 235 |
+
|
| 236 |
+
marked, heat, overlay, boxes = click_to_similarity_in_same_image(
|
| 237 |
st, click_xy=evt.index, exclude_radius_patches=int(excl),
|
| 238 |
topk=int(k), alpha=float(a), cmap_name=m,
|
| 239 |
box_radius_patches=int(box_rad),
|
| 240 |
)
|
| 241 |
+
return marked, heat, overlay, boxes
|
| 242 |
|
| 243 |
+
# Wire events
|
| 244 |
+
inputs_for_update = [input_image, target_long_side]
|
| 245 |
+
outputs_for_upload = [marked_image, app_state, heatmap_output, overlay_output, overlay_boxes_output, marked_image]
|
| 246 |
|
| 247 |
+
input_image.upload(_on_upload_or_slider_change, inputs=inputs_for_update, outputs=outputs_for_upload)
|
| 248 |
+
target_long_side.change(_on_upload_or_slider_change, inputs=inputs_for_update, outputs=outputs_for_upload)
|
| 249 |
+
demo.load(_on_upload_or_slider_change, inputs=inputs_for_update, outputs=outputs_for_upload)
|
|
|
|
|
|
|
| 250 |
|
| 251 |
marked_image.select(
|
| 252 |
_on_click,
|