Spaces:
Runtime error
Runtime error
| # -*- coding: utf-8 -*- | |
| # Copyright (c) Alibaba, Inc. and its affiliates. | |
| # This file contains code that is adapted from | |
| # https://github.com/black-forest-labs/flux.git | |
| import math | |
| import torch | |
| from torch import Tensor, nn | |
| from collections import OrderedDict | |
| from functools import partial | |
| from einops import rearrange, repeat | |
| from scepter.modules.model.base_model import BaseModel | |
| from scepter.modules.model.registry import BACKBONES | |
| from scepter.modules.utils.config import dict_to_yaml | |
| from scepter.modules.utils.distribute import we | |
| from scepter.modules.utils.file_system import FS | |
| from torch.utils.checkpoint import checkpoint_sequential | |
| from torch.nn.utils.rnn import pad_sequence | |
| from .layers import (DoubleStreamBlock, EmbedND, LastLayer, MLPEmbedder, | |
| SingleStreamBlock, timestep_embedding) | |
| class Flux(BaseModel): | |
| """ | |
| Transformer backbone Diffusion model with RoPE. | |
| """ | |
| para_dict = { | |
| 'IN_CHANNELS': { | |
| 'value': 64, | |
| 'description': "model's input channels." | |
| }, | |
| 'OUT_CHANNELS': { | |
| 'value': 64, | |
| 'description': "model's output channels." | |
| }, | |
| 'HIDDEN_SIZE': { | |
| 'value': 1024, | |
| 'description': "model's hidden size." | |
| }, | |
| 'NUM_HEADS': { | |
| 'value': 16, | |
| 'description': 'number of heads in the transformer.' | |
| }, | |
| 'AXES_DIM': { | |
| 'value': [16, 56, 56], | |
| 'description': 'dimensions of the axes of the positional encoding.' | |
| }, | |
| 'THETA': { | |
| 'value': 10_000, | |
| 'description': 'theta for positional encoding.' | |
| }, | |
| 'VEC_IN_DIM': { | |
| 'value': 768, | |
| 'description': 'dimension of the vector input.' | |
| }, | |
| 'GUIDANCE_EMBED': { | |
| 'value': False, | |
| 'description': 'whether to use guidance embedding.' | |
| }, | |
| 'CONTEXT_IN_DIM': { | |
| 'value': 4096, | |
| 'description': 'dimension of the context input.' | |
| }, | |
| 'MLP_RATIO': { | |
| 'value': 4.0, | |
| 'description': 'ratio of mlp hidden size to hidden size.' | |
| }, | |
| 'QKV_BIAS': { | |
| 'value': True, | |
| 'description': 'whether to use bias in qkv projection.' | |
| }, | |
| 'DEPTH': { | |
| 'value': 19, | |
| 'description': 'number of transformer blocks.' | |
| }, | |
| 'DEPTH_SINGLE_BLOCKS': { | |
| 'value': | |
| 38, | |
| 'description': | |
| 'number of transformer blocks in the single stream block.' | |
| }, | |
| 'USE_GRAD_CHECKPOINT': { | |
| 'value': False, | |
| 'description': 'whether to use gradient checkpointing.' | |
| } | |
| } | |
| def __init__(self, cfg, logger=None): | |
| super().__init__(cfg, logger=logger) | |
| self.in_channels = cfg.IN_CHANNELS | |
| self.out_channels = cfg.get('OUT_CHANNELS', self.in_channels) | |
| hidden_size = cfg.get('HIDDEN_SIZE', 1024) | |
| num_heads = cfg.get('NUM_HEADS', 16) | |
| axes_dim = cfg.AXES_DIM | |
| theta = cfg.THETA | |
| vec_in_dim = cfg.VEC_IN_DIM | |
| self.guidance_embed = cfg.GUIDANCE_EMBED | |
| context_in_dim = cfg.CONTEXT_IN_DIM | |
| mlp_ratio = cfg.MLP_RATIO | |
| qkv_bias = cfg.QKV_BIAS | |
| depth = cfg.DEPTH | |
| depth_single_blocks = cfg.DEPTH_SINGLE_BLOCKS | |
| self.use_grad_checkpoint = cfg.get("USE_GRAD_CHECKPOINT", False) | |
| self.attn_backend = cfg.get("ATTN_BACKEND", "pytorch") | |
| self.cache_pretrain_model = cfg.get("CACHE_PRETRAIN_MODEL", False) | |
| self.lora_model = cfg.get("DIFFUSERS_LORA_MODEL", None) | |
| self.comfyui_lora_model = cfg.get("COMFYUI_LORA_MODEL", None) | |
| self.swift_lora_model = cfg.get("SWIFT_LORA_MODEL", None) | |
| self.blackforest_lora_model = cfg.get("BLACKFOREST_LORA_MODEL", None) | |
| self.pretrain_adapter = cfg.get("PRETRAIN_ADAPTER", None) | |
| if hidden_size % num_heads != 0: | |
| raise ValueError( | |
| f"Hidden size {hidden_size} must be divisible by num_heads {num_heads}" | |
| ) | |
| pe_dim = hidden_size // num_heads | |
| if sum(axes_dim) != pe_dim: | |
| raise ValueError( | |
| f"Got {axes_dim} but expected positional dim {pe_dim}") | |
| self.hidden_size = hidden_size | |
| self.num_heads = num_heads | |
| self.pe_embedder = EmbedND(dim=pe_dim, theta=theta, axes_dim=axes_dim) | |
| self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True) | |
| self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) | |
| self.vector_in = MLPEmbedder(vec_in_dim, self.hidden_size) | |
| self.guidance_in = (MLPEmbedder(in_dim=256, | |
| hidden_dim=self.hidden_size) | |
| if self.guidance_embed else nn.Identity()) | |
| self.txt_in = nn.Linear(context_in_dim, self.hidden_size) | |
| self.double_blocks = nn.ModuleList( | |
| [ | |
| DoubleStreamBlock( | |
| self.hidden_size, | |
| self.num_heads, | |
| mlp_ratio=mlp_ratio, | |
| qkv_bias=qkv_bias, | |
| backend=self.attn_backend | |
| ) | |
| for _ in range(depth) | |
| ] | |
| ) | |
| self.single_blocks = nn.ModuleList( | |
| [ | |
| SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=mlp_ratio, backend=self.attn_backend) | |
| for _ in range(depth_single_blocks) | |
| ] | |
| ) | |
| self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels) | |
| def prepare_input(self, x, context, y, x_shape=None): | |
| # x.shape [6, 16, 16, 16] target is [6, 16, 768, 1360] | |
| bs, c, h, w = x.shape | |
| x = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2) | |
| x_id = torch.zeros(h // 2, w // 2, 3) | |
| x_id[..., 1] = x_id[..., 1] + torch.arange(h // 2)[:, None] | |
| x_id[..., 2] = x_id[..., 2] + torch.arange(w // 2)[None, :] | |
| x_ids = repeat(x_id, "h w c -> b (h w) c", b=bs) | |
| txt_ids = torch.zeros(bs, context.shape[1], 3) | |
| return x, x_ids.to(x), context.to(x), txt_ids.to(x), y.to(x), h, w | |
| def unpack(self, x: Tensor, height: int, width: int) -> Tensor: | |
| return rearrange( | |
| x, | |
| "b (h w) (c ph pw) -> b c (h ph) (w pw)", | |
| h=math.ceil(height/2), | |
| w=math.ceil(width/2), | |
| ph=2, | |
| pw=2, | |
| ) | |
| def merge_diffuser_lora(self, ori_sd, lora_sd, scale=1.0): | |
| key_map = { | |
| "single_blocks.{}.linear1.weight": {"key_list": [ | |
| ["transformer.single_transformer_blocks.{}.attn.to_q.lora_A.weight", | |
| "transformer.single_transformer_blocks.{}.attn.to_q.lora_B.weight", [0, 3072]], | |
| ["transformer.single_transformer_blocks.{}.attn.to_k.lora_A.weight", | |
| "transformer.single_transformer_blocks.{}.attn.to_k.lora_B.weight", [3072, 6144]], | |
| ["transformer.single_transformer_blocks.{}.attn.to_v.lora_A.weight", | |
| "transformer.single_transformer_blocks.{}.attn.to_v.lora_B.weight", [6144, 9216]], | |
| ["transformer.single_transformer_blocks.{}.proj_mlp.lora_A.weight", | |
| "transformer.single_transformer_blocks.{}.proj_mlp.lora_B.weight", [9216, 21504]] | |
| ], "num": 38}, | |
| "single_blocks.{}.modulation.lin.weight": {"key_list": [ | |
| ["transformer.single_transformer_blocks.{}.norm.linear.lora_A.weight", | |
| "transformer.single_transformer_blocks.{}.norm.linear.lora_B.weight", [0, 9216]], | |
| ], "num": 38}, | |
| "single_blocks.{}.linear2.weight": {"key_list": [ | |
| ["transformer.single_transformer_blocks.{}.proj_out.lora_A.weight", | |
| "transformer.single_transformer_blocks.{}.proj_out.lora_B.weight", [0, 3072]], | |
| ], "num": 38}, | |
| "double_blocks.{}.txt_attn.qkv.weight": {"key_list": [ | |
| ["transformer.transformer_blocks.{}.attn.add_q_proj.lora_A.weight", | |
| "transformer.transformer_blocks.{}.attn.add_q_proj.lora_B.weight", [0, 3072]], | |
| ["transformer.transformer_blocks.{}.attn.add_k_proj.lora_A.weight", | |
| "transformer.transformer_blocks.{}.attn.add_k_proj.lora_B.weight", [3072, 6144]], | |
| ["transformer.transformer_blocks.{}.attn.add_v_proj.lora_A.weight", | |
| "transformer.transformer_blocks.{}.attn.add_v_proj.lora_B.weight", [6144, 9216]], | |
| ], "num": 19}, | |
| "double_blocks.{}.img_attn.qkv.weight": {"key_list": [ | |
| ["transformer.transformer_blocks.{}.attn.to_q.lora_A.weight", | |
| "transformer.transformer_blocks.{}.attn.to_q.lora_B.weight", [0, 3072]], | |
| ["transformer.transformer_blocks.{}.attn.to_k.lora_A.weight", | |
| "transformer.transformer_blocks.{}.attn.to_k.lora_B.weight", [3072, 6144]], | |
| ["transformer.transformer_blocks.{}.attn.to_v.lora_A.weight", | |
| "transformer.transformer_blocks.{}.attn.to_v.lora_B.weight", [6144, 9216]], | |
| ], "num": 19}, | |
| "double_blocks.{}.img_attn.proj.weight": {"key_list": [ | |
| ["transformer.transformer_blocks.{}.attn.to_out.0.lora_A.weight", | |
| "transformer.transformer_blocks.{}.attn.to_out.0.lora_B.weight", [0, 3072]] | |
| ], "num": 19}, | |
| "double_blocks.{}.txt_attn.proj.weight": {"key_list": [ | |
| ["transformer.transformer_blocks.{}.attn.to_add_out.lora_A.weight", | |
| "transformer.transformer_blocks.{}.attn.to_add_out.lora_B.weight", [0, 3072]] | |
| ], "num": 19}, | |
| "double_blocks.{}.img_mlp.0.weight": {"key_list": [ | |
| ["transformer.transformer_blocks.{}.ff.net.0.proj.lora_A.weight", | |
| "transformer.transformer_blocks.{}.ff.net.0.proj.lora_B.weight", [0, 12288]] | |
| ], "num": 19}, | |
| "double_blocks.{}.img_mlp.2.weight": {"key_list": [ | |
| ["transformer.transformer_blocks.{}.ff.net.2.lora_A.weight", | |
| "transformer.transformer_blocks.{}.ff.net.2.lora_B.weight", [0, 3072]] | |
| ], "num": 19}, | |
| "double_blocks.{}.txt_mlp.0.weight": {"key_list": [ | |
| ["transformer.transformer_blocks.{}.ff_context.net.0.proj.lora_A.weight", | |
| "transformer.transformer_blocks.{}.ff_context.net.0.proj.lora_B.weight", [0, 12288]] | |
| ], "num": 19}, | |
| "double_blocks.{}.txt_mlp.2.weight": {"key_list": [ | |
| ["transformer.transformer_blocks.{}.ff_context.net.2.lora_A.weight", | |
| "transformer.transformer_blocks.{}.ff_context.net.2.lora_B.weight", [0, 3072]] | |
| ], "num": 19}, | |
| "double_blocks.{}.img_mod.lin.weight": {"key_list": [ | |
| ["transformer.transformer_blocks.{}.norm1.linear.lora_A.weight", | |
| "transformer.transformer_blocks.{}.norm1.linear.lora_B.weight", [0, 18432]] | |
| ], "num": 19}, | |
| "double_blocks.{}.txt_mod.lin.weight": {"key_list": [ | |
| ["transformer.transformer_blocks.{}.norm1_context.linear.lora_A.weight", | |
| "transformer.transformer_blocks.{}.norm1_context.linear.lora_B.weight", [0, 18432]] | |
| ], "num": 19} | |
| } | |
| cover_lora_keys = set() | |
| cover_ori_keys = set() | |
| for k, v in key_map.items(): | |
| key_list = v["key_list"] | |
| block_num = v["num"] | |
| for block_id in range(block_num): | |
| for k_list in key_list: | |
| if k_list[0].format(block_id) in lora_sd and k_list[1].format(block_id) in lora_sd: | |
| cover_lora_keys.add(k_list[0].format(block_id)) | |
| cover_lora_keys.add(k_list[1].format(block_id)) | |
| current_weight = torch.matmul(lora_sd[k_list[0].format(block_id)].permute(1, 0), | |
| lora_sd[k_list[1].format(block_id)].permute(1, 0)).permute(1, 0) | |
| ori_sd[k.format(block_id)][k_list[2][0]:k_list[2][1], ...] += scale * current_weight | |
| cover_ori_keys.add(k.format(block_id)) | |
| # lora_sd.pop(k_list[0].format(block_id)) | |
| # lora_sd.pop(k_list[1].format(block_id)) | |
| self.logger.info(f"merge_blackforest_lora loads lora'parameters lora-paras: \n" | |
| f"cover-{len(cover_lora_keys)} vs total {len(lora_sd)} \n" | |
| f"cover ori-{len(cover_ori_keys)} vs total {len(ori_sd)}") | |
| return ori_sd | |
| def merge_swift_lora(self, ori_sd, lora_sd, scale = 1.0): | |
| have_lora_keys = {} | |
| for k, v in lora_sd.items(): | |
| k = k[len("model."):] if k.startswith("model.") else k | |
| ori_key = k.split("lora")[0] + "weight" | |
| if ori_key not in ori_sd: | |
| raise f"{ori_key} should in the original statedict" | |
| if ori_key not in have_lora_keys: | |
| have_lora_keys[ori_key] = {} | |
| if "lora_A" in k: | |
| have_lora_keys[ori_key]["lora_A"] = v | |
| elif "lora_B" in k: | |
| have_lora_keys[ori_key]["lora_B"] = v | |
| else: | |
| raise NotImplementedError | |
| self.logger.info(f"merge_swift_lora loads lora'parameters {len(have_lora_keys)}") | |
| for key, v in have_lora_keys.items(): | |
| current_weight = torch.matmul(v["lora_A"].permute(1, 0), v["lora_B"].permute(1, 0)).permute(1, 0) | |
| ori_sd[key] += scale * current_weight | |
| return ori_sd | |
| def merge_blackforest_lora(self, ori_sd, lora_sd, scale = 1.0): | |
| have_lora_keys = {} | |
| cover_lora_keys = set() | |
| cover_ori_keys = set() | |
| for k, v in lora_sd.items(): | |
| if "lora" in k: | |
| ori_key = k.split("lora")[0] + "weight" | |
| if ori_key not in ori_sd: | |
| raise f"{ori_key} should in the original statedict" | |
| if ori_key not in have_lora_keys: | |
| have_lora_keys[ori_key] = {} | |
| if "lora_A" in k: | |
| have_lora_keys[ori_key]["lora_A"] = v | |
| cover_lora_keys.add(k) | |
| cover_ori_keys.add(ori_key) | |
| elif "lora_B" in k: | |
| have_lora_keys[ori_key]["lora_B"] = v | |
| cover_lora_keys.add(k) | |
| cover_ori_keys.add(ori_key) | |
| else: | |
| if k in ori_sd: | |
| ori_sd[k] = v | |
| cover_lora_keys.add(k) | |
| cover_ori_keys.add(k) | |
| else: | |
| print("unsurpport keys: ", k) | |
| self.logger.info(f"merge_blackforest_lora loads lora'parameters lora-paras: \n" | |
| f"cover-{len(cover_lora_keys)} vs total {len(lora_sd)} \n" | |
| f"cover ori-{len(cover_ori_keys)} vs total {len(ori_sd)}") | |
| for key, v in have_lora_keys.items(): | |
| current_weight = torch.matmul(v["lora_A"].permute(1, 0), v["lora_B"].permute(1, 0)).permute(1, 0) | |
| # print(key, ori_sd[key].shape, current_weight.shape) | |
| ori_sd[key] += scale * current_weight | |
| return ori_sd | |
| def merge_comfyui_lora(self, ori_sd, lora_sd, scale = 1.0): | |
| ori_key_map = {key.replace("_", ".") : key for key in ori_sd.keys()} | |
| parse_ckpt = OrderedDict() | |
| for k, v in lora_sd.items(): | |
| if "alpha" in k: | |
| continue | |
| k = k.replace("lora_unet_", "").replace("_", ".") | |
| map_k = ori_key_map[k.split(".lora")[0] + ".weight"] | |
| if map_k not in parse_ckpt: | |
| parse_ckpt[map_k] = {} | |
| if "lora.up" in k: | |
| parse_ckpt[map_k]["lora_up"] = v | |
| elif "lora.down" in k: | |
| parse_ckpt[map_k]["lora_down"] = v | |
| if self.cache_pretrain_model: | |
| self.lora_dict[self.comfyui_lora_model] = {} | |
| for key, v in parse_ckpt.items(): | |
| current_weight = torch.matmul(v["lora_down"].permute(1, 0), v["lora_up"].permute(1, 0)).permute(1, 0) | |
| self.lora_dict[self.comfyui_lora_model] = current_weight | |
| ori_sd[key] += scale * current_weight | |
| return ori_sd | |
| def easy_lora_merge(self, ori_sd, lora_sd, scale = 1.0): | |
| for key, v in lora_sd.items(): | |
| ori_sd[key] += scale * v | |
| return ori_sd | |
| def load_pretrained_model(self, pretrained_model, lora_scale = 1.0): | |
| if next(self.parameters()).device.type == 'meta': | |
| map_location = torch.device(we.device_id) | |
| safe_device = we.device_id | |
| else: | |
| map_location = "cpu" | |
| safe_device = "cpu" | |
| if pretrained_model is not None: | |
| if not hasattr(self, "ckpt"): | |
| with FS.get_from(pretrained_model, wait_finish=True) as local_model: | |
| if local_model.endswith('safetensors'): | |
| from safetensors.torch import load_file as load_safetensors | |
| ckpt = load_safetensors(local_model, device=safe_device) | |
| else: | |
| ckpt = torch.load(local_model, map_location=map_location, weights_only=True) | |
| if "state_dict" in ckpt: | |
| ckpt = ckpt["state_dict"] | |
| if "model" in ckpt: | |
| ckpt = ckpt["model"]["model"] | |
| if self.cache_pretrain_model: | |
| self.ckpt = ckpt | |
| self.lora_dict = {} | |
| else: | |
| ckpt = self.ckpt | |
| new_ckpt = OrderedDict() | |
| for k, v in ckpt.items(): | |
| if k in ("img_in.weight"): | |
| model_p = self.state_dict()[k] | |
| if v.shape != model_p.shape: | |
| expanded_state_dict_weight = torch.zeros_like(model_p, device=v.device) | |
| slices = tuple(slice(0, dim) for dim in v.shape) | |
| expanded_state_dict_weight[slices] = v | |
| new_ckpt[k] = expanded_state_dict_weight | |
| else: | |
| new_ckpt[k] = v | |
| else: | |
| new_ckpt[k] = v | |
| if self.lora_model is not None: | |
| with FS.get_from(self.lora_model, wait_finish=True) as local_model: | |
| if local_model.endswith('safetensors'): | |
| from safetensors.torch import load_file as load_safetensors | |
| lora_sd = load_safetensors(local_model, device=safe_device) | |
| else: | |
| lora_sd = torch.load(local_model, map_location=map_location, weights_only=True) | |
| new_ckpt = self.merge_diffuser_lora(new_ckpt, lora_sd, scale=lora_scale) | |
| if self.swift_lora_model is not None: | |
| if not isinstance(self.swift_lora_model, list): | |
| self.swift_lora_model = [(self.swift_lora_model, 1.0)] | |
| for lora_model in self.swift_lora_model: | |
| if isinstance(lora_model, str): | |
| lora_model = (lora_model, 1.0/len(self.swift_lora_model)) | |
| print(lora_model) | |
| self.logger.info(f"load swift lora model: {lora_model}") | |
| with FS.get_from(lora_model[0], wait_finish=True) as local_model: | |
| if local_model.endswith('safetensors'): | |
| from safetensors.torch import load_file as load_safetensors | |
| lora_sd = load_safetensors(local_model, device=safe_device) | |
| else: | |
| lora_sd = torch.load(local_model, map_location=map_location, weights_only=True) | |
| new_ckpt = self.merge_swift_lora(new_ckpt, lora_sd, scale=lora_model[1]) | |
| if self.blackforest_lora_model is not None: | |
| with FS.get_from(self.blackforest_lora_model, wait_finish=True) as local_model: | |
| if local_model.endswith('safetensors'): | |
| from safetensors.torch import load_file as load_safetensors | |
| lora_sd = load_safetensors(local_model, device=safe_device) | |
| else: | |
| lora_sd = torch.load(local_model, map_location=map_location, weights_only=True) | |
| new_ckpt = self.merge_blackforest_lora(new_ckpt, lora_sd, scale=lora_scale) | |
| if self.comfyui_lora_model is not None: | |
| if hasattr(self, "current_lora") and self.current_lora == self.comfyui_lora_model: | |
| return | |
| if hasattr(self, "lora_dict") and self.comfyui_lora_model in self.lora_dict: | |
| new_ckpt = self.easy_lora_merge(new_ckpt, self.lora_dict[self.comfyui_lora_model], scale=lora_scale) | |
| else: | |
| with FS.get_from(self.comfyui_lora_model, wait_finish=True) as local_model: | |
| if local_model.endswith('safetensors'): | |
| from safetensors.torch import load_file as load_safetensors | |
| lora_sd = load_safetensors(local_model, device=safe_device) | |
| else: | |
| lora_sd = torch.load(local_model, map_location=map_location, weights_only=True) | |
| new_ckpt = self.merge_comfyui_lora(new_ckpt, lora_sd, scale=lora_scale) | |
| if self.comfyui_lora_model: | |
| self.current_lora = self.comfyui_lora_model | |
| adapter_ckpt = {} | |
| if self.pretrain_adapter is not None: | |
| with FS.get_from(self.pretrain_adapter, wait_finish=True) as local_adapter: | |
| if local_adapter.endswith('safetensors'): | |
| from safetensors.torch import load_file as load_safetensors | |
| adapter_ckpt = load_safetensors(local_adapter, device=safe_device) | |
| else: | |
| adapter_ckpt = torch.load(local_adapter, map_location=map_location, weights_only=True) | |
| new_ckpt.update(adapter_ckpt) | |
| missing, unexpected = self.load_state_dict(new_ckpt, strict=False, assign=True) | |
| self.logger.info( | |
| f'Restored from {pretrained_model} with {len(missing)} missing and {len(unexpected)} unexpected keys' | |
| ) | |
| if len(missing) > 0: | |
| self.logger.info(f'Missing Keys:\n {missing}') | |
| if len(unexpected) > 0: | |
| self.logger.info(f'\nUnexpected Keys:\n {unexpected}') | |
| def forward( | |
| self, | |
| x: Tensor, | |
| t: Tensor, | |
| cond: dict = {}, | |
| guidance: Tensor | None = None, | |
| gc_seg: int = 0 | |
| ) -> Tensor: | |
| x, x_ids, txt, txt_ids, y, h, w = self.prepare_input(x, cond["context"], cond["y"]) | |
| # running on sequences img | |
| x = self.img_in(x) | |
| vec = self.time_in(timestep_embedding(t, 256)) | |
| if self.guidance_embed: | |
| if guidance is None: | |
| raise ValueError("Didn't get guidance strength for guidance distilled model.") | |
| vec = vec + self.guidance_in(timestep_embedding(guidance, 256)) | |
| vec = vec + self.vector_in(y) | |
| txt = self.txt_in(txt) | |
| ids = torch.cat((txt_ids, x_ids), dim=1) | |
| pe = self.pe_embedder(ids) | |
| kwargs = dict( | |
| vec=vec, | |
| pe=pe, | |
| txt_length=txt.shape[1], | |
| ) | |
| x = torch.cat((txt, x), 1) | |
| if self.use_grad_checkpoint and gc_seg >= 0: | |
| x = checkpoint_sequential( | |
| functions=[partial(block, **kwargs) for block in self.double_blocks], | |
| segments=gc_seg if gc_seg > 0 else len(self.double_blocks), | |
| input=x, | |
| use_reentrant=False | |
| ) | |
| else: | |
| for block in self.double_blocks: | |
| x = block(x, **kwargs) | |
| kwargs = dict( | |
| vec=vec, | |
| pe=pe, | |
| ) | |
| if self.use_grad_checkpoint and gc_seg >= 0: | |
| x = checkpoint_sequential( | |
| functions=[partial(block, **kwargs) for block in self.single_blocks], | |
| segments=gc_seg if gc_seg > 0 else len(self.single_blocks), | |
| input=x, | |
| use_reentrant=False | |
| ) | |
| else: | |
| for block in self.single_blocks: | |
| x = block(x, **kwargs) | |
| x = x[:, txt.shape[1] :, ...] | |
| x = self.final_layer(x, vec) # (N, T, patch_size ** 2 * out_channels) 6 64 64 | |
| x = self.unpack(x, h, w) | |
| return x | |
| def get_config_template(): | |
| return dict_to_yaml('BACKBONE', | |
| __class__.__name__, | |
| Flux.para_dict, | |
| set_name=True) | |
| class FluxMR(Flux): | |
| def prepare_input(self, x, cond): | |
| if isinstance(cond['context'], list): | |
| context, y = torch.cat(cond["context"], dim=0).to(x), torch.cat(cond["y"], dim=0).to(x) | |
| else: | |
| context, y = cond['context'].to(x), cond['y'].to(x) | |
| batch_frames, batch_frames_ids = [], [] | |
| for ix, shape in zip(x, cond["x_shapes"]): | |
| # unpack image from sequence | |
| ix = ix[:, :shape[0] * shape[1]].view(-1, shape[0], shape[1]) | |
| c, h, w = ix.shape | |
| ix = rearrange(ix, "c (h ph) (w pw) -> (h w) (c ph pw)", ph=2, pw=2) | |
| ix_id = torch.zeros(h // 2, w // 2, 3) | |
| ix_id[..., 1] = ix_id[..., 1] + torch.arange(h // 2)[:, None] | |
| ix_id[..., 2] = ix_id[..., 2] + torch.arange(w // 2)[None, :] | |
| ix_id = rearrange(ix_id, "h w c -> (h w) c") | |
| batch_frames.append([ix]) | |
| batch_frames_ids.append([ix_id]) | |
| x_list, x_id_list, mask_x_list, x_seq_length = [], [], [], [] | |
| for frames, frame_ids in zip(batch_frames, batch_frames_ids): | |
| proj_frames = [] | |
| for idx, one_frame in enumerate(frames): | |
| one_frame = self.img_in(one_frame) | |
| proj_frames.append(one_frame) | |
| ix = torch.cat(proj_frames, dim=0) | |
| if_id = torch.cat(frame_ids, dim=0) | |
| x_list.append(ix) | |
| x_id_list.append(if_id) | |
| mask_x_list.append(torch.ones(ix.shape[0]).to(ix.device, non_blocking=True).bool()) | |
| x_seq_length.append(ix.shape[0]) | |
| x = pad_sequence(tuple(x_list), batch_first=True) | |
| x_ids = pad_sequence(tuple(x_id_list), batch_first=True).to(x) # [b,pad_seq,2] pad (0.,0.) at dim2 | |
| mask_x = pad_sequence(tuple(mask_x_list), batch_first=True) | |
| txt = self.txt_in(context) | |
| txt_ids = torch.zeros(context.shape[0], context.shape[1], 3).to(x) | |
| mask_txt = torch.ones(context.shape[0], context.shape[1]).to(x.device, non_blocking=True).bool() | |
| return x, x_ids, txt, txt_ids, y, mask_x, mask_txt, x_seq_length | |
| def unpack(self, x: Tensor, cond: dict = None, x_seq_length: list = None) -> Tensor: | |
| x_list = [] | |
| image_shapes = cond["x_shapes"] | |
| for u, shape, seq_length in zip(x, image_shapes, x_seq_length): | |
| height, width = shape | |
| h, w = math.ceil(height / 2), math.ceil(width / 2) | |
| u = rearrange( | |
| u[seq_length-h*w:seq_length, ...], | |
| "(h w) (c ph pw) -> (h ph w pw) c", | |
| h=h, | |
| w=w, | |
| ph=2, | |
| pw=2, | |
| ) | |
| x_list.append(u) | |
| x = pad_sequence(tuple(x_list), batch_first=True).permute(0, 2, 1) | |
| return x | |
| def forward( | |
| self, | |
| x: Tensor, | |
| t: Tensor, | |
| cond: dict = {}, | |
| guidance: Tensor | None = None, | |
| gc_seg: int = 0, | |
| **kwargs | |
| ) -> Tensor: | |
| x, x_ids, txt, txt_ids, y, mask_x, mask_txt, seq_length_list = self.prepare_input(x, cond) | |
| # running on sequences img | |
| vec = self.time_in(timestep_embedding(t, 256)) | |
| if self.guidance_embed and guidance[-1] >= 0: | |
| if guidance is None: | |
| raise ValueError("Didn't get guidance strength for guidance distilled model.") | |
| vec = vec + self.guidance_in(timestep_embedding(guidance, 256)) | |
| vec = vec + self.vector_in(y) | |
| ids = torch.cat((txt_ids, x_ids), dim=1) | |
| pe = self.pe_embedder(ids) | |
| mask_aside = torch.cat((mask_txt, mask_x), dim=1) | |
| mask = mask_aside[:, None, :] * mask_aside[:, :, None] | |
| kwargs = dict( | |
| vec=vec, | |
| pe=pe, | |
| mask=mask, | |
| txt_length = txt.shape[1], | |
| ) | |
| x = torch.cat((txt, x), 1) | |
| if self.use_grad_checkpoint and gc_seg >= 0: | |
| x = checkpoint_sequential( | |
| functions=[partial(block, **kwargs) for block in self.double_blocks], | |
| segments=gc_seg if gc_seg > 0 else len(self.double_blocks), | |
| input=x, | |
| use_reentrant=False | |
| ) | |
| else: | |
| for block in self.double_blocks: | |
| x = block(x, **kwargs) | |
| kwargs = dict( | |
| vec=vec, | |
| pe=pe, | |
| mask=mask, | |
| ) | |
| if self.use_grad_checkpoint and gc_seg >= 0: | |
| x = checkpoint_sequential( | |
| functions=[partial(block, **kwargs) for block in self.single_blocks], | |
| segments=gc_seg if gc_seg > 0 else len(self.single_blocks), | |
| input=x, | |
| use_reentrant=False | |
| ) | |
| else: | |
| for block in self.single_blocks: | |
| x = block(x, **kwargs) | |
| x = x[:, txt.shape[1]:, ...] | |
| x = self.final_layer(x, vec) # (N, T, patch_size ** 2 * out_channels) 6 64 64 | |
| x = self.unpack(x, cond, seq_length_list) | |
| return x | |
| def get_config_template(): | |
| return dict_to_yaml('MODEL', | |
| __class__.__name__, | |
| FluxMR.para_dict, | |
| set_name=True) | |
| class FluxMRACEPlus(FluxMR): | |
| def __init__(self, cfg, logger = None): | |
| super().__init__(cfg, logger) | |
| def prepare_input(self, x, cond): | |
| context, y = cond["context"], cond["y"] | |
| batch_frames, batch_frames_ids = [], [] | |
| for ix, shape, imask, ie, ie_mask in zip(x, | |
| cond['x_shapes'], | |
| cond['x_mask'], | |
| cond['edit'], | |
| cond['edit_mask']): | |
| # unpack image from sequence | |
| ix = ix[:, :shape[0] * shape[1]].view(-1, shape[0], shape[1]) | |
| imask = torch.ones_like( | |
| ix[[0], :, :]) if imask is None else imask.squeeze(0) | |
| if len(ie) > 0: | |
| ie = [iie.squeeze(0) for iie in ie] | |
| ie_mask = [ | |
| torch.ones( | |
| (ix.shape[0] * 4, ix.shape[1], | |
| ix.shape[2])) if iime is None else iime.squeeze(0) | |
| for iime in ie_mask | |
| ] | |
| ie = torch.cat(ie, dim=-1) | |
| ie_mask = torch.cat(ie_mask, dim=-1) | |
| else: | |
| ie, ie_mask = torch.zeros_like(ix).to(x), torch.ones_like( | |
| imask).to(x), | |
| ix = torch.cat([ix, ie, ie_mask], dim=0) | |
| c, h, w = ix.shape | |
| ix = rearrange(ix, | |
| 'c (h ph) (w pw) -> (h w) (c ph pw)', | |
| ph=2, | |
| pw=2) | |
| ix_id = torch.zeros(h // 2, w // 2, 3) | |
| ix_id[..., 1] = ix_id[..., 1] + torch.arange(h // 2)[:, None] | |
| ix_id[..., 2] = ix_id[..., 2] + torch.arange(w // 2)[None, :] | |
| ix_id = rearrange(ix_id, 'h w c -> (h w) c') | |
| batch_frames.append([ix]) | |
| batch_frames_ids.append([ix_id]) | |
| x_list, x_id_list, mask_x_list, x_seq_length = [], [], [], [] | |
| for frames, frame_ids in zip(batch_frames, batch_frames_ids): | |
| proj_frames = [] | |
| for idx, one_frame in enumerate(frames): | |
| one_frame = self.img_in(one_frame) | |
| proj_frames.append(one_frame) | |
| ix = torch.cat(proj_frames, dim=0) | |
| if_id = torch.cat(frame_ids, dim=0) | |
| x_list.append(ix) | |
| x_id_list.append(if_id) | |
| mask_x_list.append(torch.ones(ix.shape[0]).to(ix.device, non_blocking=True).bool()) | |
| x_seq_length.append(ix.shape[0]) | |
| # if len(x_list) < 1: import pdb;pdb.set_trace() | |
| x = pad_sequence(tuple(x_list), batch_first=True) | |
| x_ids = pad_sequence(tuple(x_id_list), batch_first=True).to(x) # [b,pad_seq,2] pad (0.,0.) at dim2 | |
| mask_x = pad_sequence(tuple(mask_x_list), batch_first=True) | |
| if isinstance(context, list): | |
| txt_list, mask_txt_list, y_list = [], [], [] | |
| for sample_id, (ctx, yy) in enumerate(zip(context, y)): | |
| txt_list.append(self.txt_in(ctx.to(x))) | |
| mask_txt_list.append(torch.ones(txt_list[-1].shape[0]).to(ctx.device, non_blocking=True).bool()) | |
| y_list.append(yy.to(x)) | |
| txt = pad_sequence(tuple(txt_list), batch_first=True) | |
| txt_ids = torch.zeros(txt.shape[0], txt.shape[1], 3).to(x) | |
| mask_txt = pad_sequence(tuple(mask_txt_list), batch_first=True) | |
| y = torch.cat(y_list, dim=0) | |
| assert y.ndim == 2 and txt.ndim == 3 | |
| else: | |
| txt = self.txt_in(context) | |
| txt_ids = torch.zeros(context.shape[0], context.shape[1], 3).to(x) | |
| mask_txt = torch.ones(context.shape[0], context.shape[1]).to(x.device, non_blocking=True).bool() | |
| return x, x_ids, txt, txt_ids, y, mask_x, mask_txt, x_seq_length | |
| def get_config_template(): | |
| return dict_to_yaml('MODEL', | |
| __class__.__name__, | |
| FluxMRACEPlus.para_dict, | |
| set_name=True) | |
| class FluxMRModiACEPlus(FluxMR): | |
| def __init__(self, cfg, logger = None): | |
| super().__init__(cfg, logger) | |
| def prepare_input(self, x, cond): | |
| context, y = cond["context"], cond["y"] | |
| batch_frames, batch_frames_ids = [], [] | |
| for ix, shape, imask, ie, im, ie_mask in zip(x, | |
| cond['x_shapes'], | |
| cond['x_mask'], | |
| cond['edit'], | |
| cond['modify'], | |
| cond['edit_mask']): | |
| # unpack image from sequence | |
| ix = ix[:, :shape[0] * shape[1]].view(-1, shape[0], shape[1]) | |
| imask = torch.ones_like( | |
| ix[[0], :, :]) if imask is None else imask.squeeze(0) | |
| if len(ie) > 0: | |
| ie = [iie.squeeze(0) for iie in ie] | |
| im = [iim.squeeze(0) for iim in im] | |
| ie_mask = [ | |
| torch.ones( | |
| (ix.shape[0] * 4, ix.shape[1], | |
| ix.shape[2])) if iime is None else iime.squeeze(0) | |
| for iime in ie_mask | |
| ] | |
| im = torch.cat(im, dim=-1) | |
| ie = torch.cat(ie, dim=-1) | |
| ie_mask = torch.cat(ie_mask, dim=-1) | |
| else: | |
| ie, im, ie_mask = torch.zeros_like(ix).to(x), torch.zeros_like(ix).to(x), torch.ones_like( | |
| imask).to(x), | |
| ix = torch.cat([ix, ie, im, ie_mask], dim=0) | |
| c, h, w = ix.shape | |
| ix = rearrange(ix, | |
| 'c (h ph) (w pw) -> (h w) (c ph pw)', | |
| ph=2, | |
| pw=2) | |
| ix_id = torch.zeros(h // 2, w // 2, 3) | |
| ix_id[..., 1] = ix_id[..., 1] + torch.arange(h // 2)[:, None] | |
| ix_id[..., 2] = ix_id[..., 2] + torch.arange(w // 2)[None, :] | |
| ix_id = rearrange(ix_id, 'h w c -> (h w) c') | |
| batch_frames.append([ix]) | |
| batch_frames_ids.append([ix_id]) | |
| x_list, x_id_list, mask_x_list, x_seq_length = [], [], [], [] | |
| for frames, frame_ids in zip(batch_frames, batch_frames_ids): | |
| proj_frames = [] | |
| for idx, one_frame in enumerate(frames): | |
| one_frame = self.img_in(one_frame) | |
| proj_frames.append(one_frame) | |
| ix = torch.cat(proj_frames, dim=0) | |
| if_id = torch.cat(frame_ids, dim=0) | |
| x_list.append(ix) | |
| x_id_list.append(if_id) | |
| mask_x_list.append(torch.ones(ix.shape[0]).to(ix.device, non_blocking=True).bool()) | |
| x_seq_length.append(ix.shape[0]) | |
| # if len(x_list) < 1: import pdb;pdb.set_trace() | |
| x = pad_sequence(tuple(x_list), batch_first=True) | |
| x_ids = pad_sequence(tuple(x_id_list), batch_first=True).to(x) # [b,pad_seq,2] pad (0.,0.) at dim2 | |
| mask_x = pad_sequence(tuple(mask_x_list), batch_first=True) | |
| if isinstance(context, list): | |
| txt_list, mask_txt_list, y_list = [], [], [] | |
| for sample_id, (ctx, yy) in enumerate(zip(context, y)): | |
| txt_list.append(self.txt_in(ctx.to(x))) | |
| mask_txt_list.append(torch.ones(txt_list[-1].shape[0]).to(ctx.device, non_blocking=True).bool()) | |
| y_list.append(yy.to(x)) | |
| txt = pad_sequence(tuple(txt_list), batch_first=True) | |
| txt_ids = torch.zeros(txt.shape[0], txt.shape[1], 3).to(x) | |
| mask_txt = pad_sequence(tuple(mask_txt_list), batch_first=True) | |
| y = torch.cat(y_list, dim=0) | |
| assert y.ndim == 2 and txt.ndim == 3 | |
| else: | |
| txt = self.txt_in(context) | |
| txt_ids = torch.zeros(context.shape[0], context.shape[1], 3).to(x) | |
| mask_txt = torch.ones(context.shape[0], context.shape[1]).to(x.device, non_blocking=True).bool() | |
| return x, x_ids, txt, txt_ids, y, mask_x, mask_txt, x_seq_length | |
| def get_config_template(): | |
| return dict_to_yaml('MODEL', | |
| __class__.__name__, | |
| FluxMRACEPlus.para_dict, | |
| set_name=True) | |