File size: 5,778 Bytes
9f84bcd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# worker.py
import os
import asyncio
import psutil
from urllib.parse import urlparse, urlunparse
from typing import List
from crawl4ai import AsyncWebCrawler, BrowserConfig, CrawlerRunConfig, CacheMode
from crawl4ai.markdown_generation_strategy import DefaultMarkdownGenerator
from crawl4ai.content_filter_strategy import PruningContentFilter
import traceback

# ------------------------------
# File paths & config
# ------------------------------
__location__ = os.path.dirname(os.path.abspath(__file__))
batch = 32  # max concurrent crawls
goto_timeout = 60_000  # 1 minutes

# ------------------------------
# Utility functions
# ------------------------------
def normalize_url(url: str) -> str:
    """Normalize URL to avoid duplicates."""
    parsed = urlparse(url)
    return urlunparse((parsed.scheme, parsed.netloc, parsed.path, '', '', ''))

async def get_internal_urls(url_set: set, visited: set, crawler) -> set:
    """Collect internal links from a page."""
    internal_urls = crawler.links.get("internal", [])
    for link in internal_urls:
        href = link.get("href")
        if href and href.startswith("http"):
            normalized_href = normalize_url(href)
            if normalized_href not in visited:
                url_set.add(normalized_href)
    return url_set

# ------------------------------
# Core crawling function
# ------------------------------
async def crawl_parallel(urls: List[str] | str, file_path: str, max_concurrent: int = batch):
    """Crawl multiple URLs asynchronously with retries, save pages, and track failures."""
    text_pages = set()
    not_visited = set(urls if isinstance(urls, list) else [urls])
    visited = set()
    retry = set()
    failed = set()
    was_str = isinstance(urls, str)
    n = 1

    os.makedirs(file_path, exist_ok=True)

    process = psutil.Process()
    peak_memory = 0
    def log_memory(prefix: str = ""):
        nonlocal peak_memory
        current_mem = process.memory_info().rss
        peak_memory = max(peak_memory, current_mem)
        print(f"{prefix} Memory: {current_mem // (1024*1024)} MB | Peak: {peak_memory // (1024*1024)} MB")

    # Browser & crawler config
    browser_config = BrowserConfig(
        headless=True,
        verbose=False,
        extra_args=["--disable-gpu", "--disable-dev-shm-usage", "--no-sandbox"],
        text_mode=True
    )
    crawl_config = CrawlerRunConfig(
        cache_mode=CacheMode.BYPASS,
        markdown_generator=DefaultMarkdownGenerator(
            content_filter=PruningContentFilter(threshold=0.6),
            options={"ignore_links": True}
        ),
        page_timeout=goto_timeout
    )

    crawler = AsyncWebCrawler(config=browser_config)
    await crawler.start()
    print("\n=== Starting robust parallel crawling ===")

    async def safe_crawl(url, session_id):
        """Crawl a URL safely, return result or None."""
        try:
            result = await crawler.arun(url=url, config=crawl_config, session_id=session_id)
            return result
        except Exception as e:
            print(f"[WARN] Failed to crawl {url}: {e}")
            return None

    try:
        while not_visited:
            urls_batch = list(not_visited)[:max_concurrent]
            tasks = [safe_crawl(url, f"session_{i}") for i, url in enumerate(urls_batch)]

            log_memory(prefix=f"Before batch {n}: ")
            results = await asyncio.gather(*tasks, return_exceptions=True)
            log_memory(prefix=f"After batch {n}: ")

            for url, result in zip(urls_batch, results):
                if isinstance(result, Exception) or result is None or not getattr(result, "success", False):
                    if url not in retry:
                        retry.add(url)
                        print(f"[INFO] Retry scheduled for {url}")
                    else:
                        failed.add(url)
                        not_visited.discard(url)
                        visited.add(url)
                        print(f"[ERROR] Crawling failed for {url} after retry")
                else:
                    text_pages.add(result.markdown.fit_markdown)
                    if was_str:
                        internal_urls = result.links.get("internal", [])
                        for link in internal_urls:
                            href = link.get("href")
                            if href and href.startswith("http"):
                                normalized_href = normalize_url(href)
                                if normalized_href not in visited:
                                    not_visited.add(normalized_href)
                    visited.add(url)
                    retry.discard(url)
                    not_visited.discard(url)
            n += 1

    except Exception as e:
        traceback.print_exc()
        print(e)
    finally:
        await crawler.close()
        log_memory(prefix="Final: ")

    # Save pages
    pages = [p for p in text_pages if p.strip()]
    for i, page in enumerate(pages):
        with open(os.path.join(file_path, f"page_{i+1}.txt"), "w", encoding="utf-8") as f:
            f.write(page)

    print(f"\nSummary:")
    print(f"  - Successfully crawled pages: {len(pages)}")
    print(f"  - Failed URLs: {len(failed)} -> {failed}")
    print(f"Peak memory usage: {peak_memory // (1024*1024)} MB")

    return {
        "success_count": len(pages),
        "failed_urls": list(failed),
        "peak_memory_MB": peak_memory // (1024*1024)
    }

# ------------------------------
# Public scrape function
# ------------------------------
async def scrape_website(urls: str | list, file_path: str):
    """Wrapper to start crawling and return summary."""
    summary = await crawl_parallel(urls, file_path, max_concurrent=batch)
    return summary