Create training_time_calculator.py
Browse files- training_time_calculator.py +272 -0
training_time_calculator.py
ADDED
|
@@ -0,0 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import csv
|
| 3 |
+
import os
|
| 4 |
+
import numpy as np
|
| 5 |
+
|
| 6 |
+
def load_gpu_data():
|
| 7 |
+
"""Load GPU data from gpus.csv file."""
|
| 8 |
+
gpu_data = {}
|
| 9 |
+
csv_path = os.path.join(os.path.dirname(__file__), 'gpus.csv')
|
| 10 |
+
|
| 11 |
+
try:
|
| 12 |
+
with open(csv_path, 'r') as file:
|
| 13 |
+
reader = csv.DictReader(file)
|
| 14 |
+
for row in reader:
|
| 15 |
+
gpu_name = row['gpu_model'].replace('_', ' ')
|
| 16 |
+
tflops = float(row['sparce_tflops'])
|
| 17 |
+
gpu_data[gpu_name] = tflops
|
| 18 |
+
except Exception as e:
|
| 19 |
+
print(f"Error loading GPU data: {e}")
|
| 20 |
+
gpu_data = {"Custom": 0}
|
| 21 |
+
|
| 22 |
+
return gpu_data
|
| 23 |
+
|
| 24 |
+
def calculate_training_time(model_size_billions, tflops_per_gpu, num_gpus, tokens_millions, mfu_percentage):
|
| 25 |
+
"""
|
| 26 |
+
Calculate the time to train a model.
|
| 27 |
+
|
| 28 |
+
Formula:
|
| 29 |
+
- Total FLOPs = 6 * num_params * num_tokens
|
| 30 |
+
- Effective FLOPs per second = tflops_per_gpu * num_gpus * 10^12 * (MFU/100)
|
| 31 |
+
- Training time = Total FLOPs / Effective FLOPs per second
|
| 32 |
+
|
| 33 |
+
Args:
|
| 34 |
+
model_size_billions: Model size in billions of parameters
|
| 35 |
+
tflops_per_gpu: BF16 TFLOPs per GPU (effective, non-sparsity)
|
| 36 |
+
num_gpus: Number of GPUs used
|
| 37 |
+
tokens_millions: Number of tokens in millions
|
| 38 |
+
mfu_percentage: Model FLOPs Utilization percentage
|
| 39 |
+
|
| 40 |
+
Returns:
|
| 41 |
+
Training time in hours
|
| 42 |
+
"""
|
| 43 |
+
# Convert inputs to base units
|
| 44 |
+
num_params = model_size_billions * 1e9
|
| 45 |
+
num_tokens = tokens_millions * 1e6
|
| 46 |
+
|
| 47 |
+
# Calculate total FLOPs needed
|
| 48 |
+
total_flops = 6 * num_params * num_tokens
|
| 49 |
+
|
| 50 |
+
# Calculate effective FLOPs per second
|
| 51 |
+
# tflops_per_gpu is in 10^12 FLOPs per second
|
| 52 |
+
flops_per_second = tflops_per_gpu * num_gpus * 1e12 * (mfu_percentage / 100)
|
| 53 |
+
|
| 54 |
+
# Calculate training time in seconds
|
| 55 |
+
training_time_seconds = total_flops / flops_per_second
|
| 56 |
+
|
| 57 |
+
# Convert to hours
|
| 58 |
+
training_time_hours = training_time_seconds / 3600
|
| 59 |
+
|
| 60 |
+
return training_time_hours
|
| 61 |
+
|
| 62 |
+
def format_output(hours):
|
| 63 |
+
"""Format the output in a readable way."""
|
| 64 |
+
if hours < 24:
|
| 65 |
+
return f"{hours:.2f} hours"
|
| 66 |
+
else:
|
| 67 |
+
days = hours / 24
|
| 68 |
+
if days < 30:
|
| 69 |
+
return f"{days:.2f} days ({hours:.1f} hours)"
|
| 70 |
+
else:
|
| 71 |
+
months = days / 30
|
| 72 |
+
return f"{months:.2f} months ({days:.1f} days, {hours:.0f} hours)"
|
| 73 |
+
|
| 74 |
+
def slider_to_model_size(value):
|
| 75 |
+
"""Convert logarithmic slider value to actual model size in billions."""
|
| 76 |
+
# Map 0-100 to 0.1B-1000B logarithmically
|
| 77 |
+
min_log = np.log10(0.1) # -1
|
| 78 |
+
max_log = np.log10(1000) # 3
|
| 79 |
+
log_value = min_log + (max_log - min_log) * value / 100
|
| 80 |
+
return 10 ** log_value
|
| 81 |
+
|
| 82 |
+
def model_size_to_slider(size_billions):
|
| 83 |
+
"""Convert model size in billions to slider value."""
|
| 84 |
+
min_log = np.log10(0.1)
|
| 85 |
+
max_log = np.log10(1000)
|
| 86 |
+
log_value = np.log10(size_billions)
|
| 87 |
+
return 100 * (log_value - min_log) / (max_log - min_log)
|
| 88 |
+
|
| 89 |
+
def format_model_size(size_billions):
|
| 90 |
+
"""Format model size for display."""
|
| 91 |
+
if size_billions < 1:
|
| 92 |
+
return f"{size_billions * 1000:.0f}M"
|
| 93 |
+
elif size_billions < 1000:
|
| 94 |
+
return f"{size_billions:.1f}B"
|
| 95 |
+
else:
|
| 96 |
+
return f"{size_billions / 1000:.1f}T"
|
| 97 |
+
|
| 98 |
+
def update_calculation(model_size_value, model_size_unit, use_gpu_model, gpu_model, custom_tflops, num_gpus, tokens_value, tokens_unit, mfu_percentage):
|
| 99 |
+
"""Update the calculation and return formatted results."""
|
| 100 |
+
# Convert model size to billions
|
| 101 |
+
if model_size_unit == "B":
|
| 102 |
+
model_size_billions = model_size_value
|
| 103 |
+
else: # T
|
| 104 |
+
model_size_billions = model_size_value * 1000
|
| 105 |
+
|
| 106 |
+
# Convert tokens to millions
|
| 107 |
+
if tokens_unit == "M":
|
| 108 |
+
tokens_millions = tokens_value
|
| 109 |
+
elif tokens_unit == "B":
|
| 110 |
+
tokens_millions = tokens_value * 1000
|
| 111 |
+
else: # T
|
| 112 |
+
tokens_millions = tokens_value * 1000000
|
| 113 |
+
|
| 114 |
+
# Determine TFLOPs value
|
| 115 |
+
if use_gpu_model and gpu_model != "Custom":
|
| 116 |
+
gpu_data = load_gpu_data()
|
| 117 |
+
tflops_per_gpu = gpu_data.get(gpu_model, custom_tflops)
|
| 118 |
+
gpu_info = f"{gpu_model} ({tflops_per_gpu} TFLOPs)"
|
| 119 |
+
else:
|
| 120 |
+
tflops_per_gpu = custom_tflops
|
| 121 |
+
gpu_info = f"Custom ({tflops_per_gpu} TFLOPs)"
|
| 122 |
+
|
| 123 |
+
hours = calculate_training_time(model_size_billions, tflops_per_gpu, num_gpus, tokens_millions, mfu_percentage)
|
| 124 |
+
|
| 125 |
+
# Create detailed breakdown
|
| 126 |
+
total_flops = 6 * (model_size_billions * 1e9) * (tokens_millions * 1e6)
|
| 127 |
+
effective_tflops = tflops_per_gpu * num_gpus * (mfu_percentage / 100)
|
| 128 |
+
|
| 129 |
+
breakdown = f"""
|
| 130 |
+
### Calculation Breakdown:
|
| 131 |
+
- **GPU Selection**: {gpu_info}
|
| 132 |
+
- **Model Size**: {format_model_size(model_size_billions)} parameters ({model_size_billions:.2f}B)
|
| 133 |
+
- **Training Tokens**: {tokens_value}{tokens_unit} tokens ({tokens_millions:.0f}M)
|
| 134 |
+
- **Total FLOPs**: {total_flops:.2e} FLOPs
|
| 135 |
+
- **Formula**: 6 × {model_size_billions:.2f}B params × {tokens_millions:.0f}M tokens
|
| 136 |
+
- **Effective TFLOPs**: {effective_tflops:.2f} TFLOPs/s
|
| 137 |
+
- **Formula**: {tflops_per_gpu} TFLOPs/GPU × {num_gpus} GPUs × {mfu_percentage}% MFU
|
| 138 |
+
|
| 139 |
+
### Training Time:
|
| 140 |
+
**{format_output(hours)}**
|
| 141 |
+
"""
|
| 142 |
+
|
| 143 |
+
return breakdown
|
| 144 |
+
|
| 145 |
+
# Load GPU data
|
| 146 |
+
gpu_data = load_gpu_data()
|
| 147 |
+
gpu_choices = ["Custom"] + list(gpu_data.keys())
|
| 148 |
+
|
| 149 |
+
# Create the Gradio interface
|
| 150 |
+
with gr.Blocks(title="Model Training Time Calculator") as demo:
|
| 151 |
+
gr.Markdown("# Model Training Time Calculator")
|
| 152 |
+
gr.Markdown("Calculate the time required to train a model based on model size, hardware specs, and token count.")
|
| 153 |
+
|
| 154 |
+
with gr.Row():
|
| 155 |
+
with gr.Column():
|
| 156 |
+
with gr.Row():
|
| 157 |
+
model_size_value = gr.Number(
|
| 158 |
+
minimum=0.5,
|
| 159 |
+
maximum=1000,
|
| 160 |
+
value=7,
|
| 161 |
+
step=0.1,
|
| 162 |
+
label="Model Size",
|
| 163 |
+
info="Enter model size (0.5-1000)"
|
| 164 |
+
)
|
| 165 |
+
model_size_unit = gr.Radio(
|
| 166 |
+
choices=["B", "T"],
|
| 167 |
+
value="B",
|
| 168 |
+
label="Unit",
|
| 169 |
+
info="Model size unit"
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
# GPU Selection
|
| 173 |
+
use_gpu_model = gr.Checkbox(
|
| 174 |
+
value=True,
|
| 175 |
+
label="Use GPU Model from List",
|
| 176 |
+
info="Check to select a GPU model, uncheck to input custom TFLOPs"
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
gpu_model = gr.Dropdown(
|
| 180 |
+
choices=gpu_choices,
|
| 181 |
+
value="H100" if "H100" in gpu_choices else gpu_choices[0],
|
| 182 |
+
label="GPU Model",
|
| 183 |
+
info="Select a GPU model from the list",
|
| 184 |
+
visible=True
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
custom_tflops = gr.Slider(
|
| 188 |
+
minimum=10,
|
| 189 |
+
maximum=2000,
|
| 190 |
+
value=300,
|
| 191 |
+
step=10,
|
| 192 |
+
label="Custom BF16 TFLOPs per GPU",
|
| 193 |
+
info="Effective (non-sparsity) TFLOPs per GPU",
|
| 194 |
+
visible=False
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
num_gpus = gr.Slider(
|
| 198 |
+
minimum=1,
|
| 199 |
+
maximum=1024,
|
| 200 |
+
value=8,
|
| 201 |
+
step=1,
|
| 202 |
+
label="Number of GPUs",
|
| 203 |
+
info="Total number of GPUs for training"
|
| 204 |
+
)
|
| 205 |
+
|
| 206 |
+
with gr.Row():
|
| 207 |
+
tokens_value = gr.Slider(
|
| 208 |
+
minimum=1,
|
| 209 |
+
maximum=1000,
|
| 210 |
+
value=100,
|
| 211 |
+
step=1,
|
| 212 |
+
label="Training Tokens",
|
| 213 |
+
info="Number of training tokens"
|
| 214 |
+
)
|
| 215 |
+
tokens_unit = gr.Radio(
|
| 216 |
+
choices=["M", "B", "T"],
|
| 217 |
+
value="B",
|
| 218 |
+
label="Unit",
|
| 219 |
+
info="Token count unit"
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
mfu = gr.Slider(
|
| 223 |
+
minimum=10,
|
| 224 |
+
maximum=100,
|
| 225 |
+
value=50,
|
| 226 |
+
step=5,
|
| 227 |
+
label="Model FLOPs Utilization (MFU) %",
|
| 228 |
+
info="Efficiency of hardware utilization (50% is typical for low-end estimate)"
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
with gr.Column():
|
| 232 |
+
output = gr.Markdown(label="Results")
|
| 233 |
+
|
| 234 |
+
# Toggle between GPU model and custom TFLOPs
|
| 235 |
+
def toggle_gpu_input(use_gpu):
|
| 236 |
+
return gr.update(visible=use_gpu), gr.update(visible=not use_gpu or use_gpu and gpu_model.value == "Custom")
|
| 237 |
+
|
| 238 |
+
use_gpu_model.change(
|
| 239 |
+
fn=toggle_gpu_input,
|
| 240 |
+
inputs=[use_gpu_model],
|
| 241 |
+
outputs=[gpu_model, custom_tflops]
|
| 242 |
+
)
|
| 243 |
+
|
| 244 |
+
# Show custom TFLOPs when "Custom" is selected
|
| 245 |
+
def check_custom_selected(gpu_model_value):
|
| 246 |
+
return gr.update(visible=gpu_model_value == "Custom")
|
| 247 |
+
|
| 248 |
+
gpu_model.change(
|
| 249 |
+
fn=check_custom_selected,
|
| 250 |
+
inputs=[gpu_model],
|
| 251 |
+
outputs=[custom_tflops]
|
| 252 |
+
)
|
| 253 |
+
|
| 254 |
+
# Set up live updating
|
| 255 |
+
all_inputs = [model_size_value, model_size_unit, use_gpu_model, gpu_model, custom_tflops, num_gpus, tokens_value, tokens_unit, mfu]
|
| 256 |
+
|
| 257 |
+
for input_component in all_inputs:
|
| 258 |
+
input_component.change(
|
| 259 |
+
fn=update_calculation,
|
| 260 |
+
inputs=all_inputs,
|
| 261 |
+
outputs=output
|
| 262 |
+
)
|
| 263 |
+
|
| 264 |
+
# Initial calculation
|
| 265 |
+
demo.load(
|
| 266 |
+
fn=update_calculation,
|
| 267 |
+
inputs=all_inputs,
|
| 268 |
+
outputs=output
|
| 269 |
+
)
|
| 270 |
+
|
| 271 |
+
if __name__ == "__main__":
|
| 272 |
+
demo.launch()
|