Spaces:
Running
on
L4
Running
on
L4
add global try.
Browse files
app.py
CHANGED
|
@@ -103,98 +103,101 @@ os.makedirs('output', exist_ok=True)
|
|
| 103 |
|
| 104 |
def inference(image, background_enhance, face_upsample, upscale, codeformer_fidelity):
|
| 105 |
"""Run a single prediction on the model"""
|
| 106 |
-
#
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
bg_upsampler = upsampler if background_enhance else None
|
| 123 |
-
face_upsampler = upsampler if face_upsample else None
|
| 124 |
-
|
| 125 |
-
img = cv2.imread(str(image), cv2.IMREAD_COLOR)
|
| 126 |
-
|
| 127 |
-
if has_aligned:
|
| 128 |
-
# the input faces are already cropped and aligned
|
| 129 |
-
img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
|
| 130 |
-
face_helper.is_gray = is_gray(img, threshold=5)
|
| 131 |
-
if face_helper.is_gray:
|
| 132 |
-
print('Grayscale input: True')
|
| 133 |
-
face_helper.cropped_faces = [img]
|
| 134 |
-
else:
|
| 135 |
-
face_helper.read_image(img)
|
| 136 |
-
# get face landmarks for each face
|
| 137 |
-
num_det_faces = face_helper.get_face_landmarks_5(
|
| 138 |
-
only_center_face=only_center_face, resize=640, eye_dist_threshold=5
|
| 139 |
-
)
|
| 140 |
-
print(f"\tdetect {num_det_faces} faces")
|
| 141 |
-
# align and warp each face
|
| 142 |
-
face_helper.align_warp_face()
|
| 143 |
-
|
| 144 |
-
# face restoration for each cropped face
|
| 145 |
-
for idx, cropped_face in enumerate(face_helper.cropped_faces):
|
| 146 |
-
# prepare data
|
| 147 |
-
cropped_face_t = img2tensor(
|
| 148 |
-
cropped_face / 255.0, bgr2rgb=True, float32=True
|
| 149 |
)
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
print(f"\tFailed inference for CodeFormer: {error}")
|
| 163 |
-
restored_face = tensor2img(
|
| 164 |
-
cropped_face_t, rgb2bgr=True, min_max=(-1, 1)
|
| 165 |
-
)
|
| 166 |
-
|
| 167 |
-
restored_face = restored_face.astype("uint8")
|
| 168 |
-
face_helper.add_restored_face(restored_face)
|
| 169 |
-
|
| 170 |
-
# paste_back
|
| 171 |
-
if not has_aligned:
|
| 172 |
-
# upsample the background
|
| 173 |
-
if bg_upsampler is not None:
|
| 174 |
-
# Now only support RealESRGAN for upsampling background
|
| 175 |
-
bg_img = bg_upsampler.enhance(img, outscale=upscale)[0]
|
| 176 |
else:
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
restored_img = face_helper.paste_faces_to_input_image(
|
| 182 |
-
upsample_img=bg_img,
|
| 183 |
-
draw_box=draw_box,
|
| 184 |
-
face_upsampler=face_upsampler,
|
| 185 |
)
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
)
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
|
| 199 |
|
| 200 |
title = "CodeFormer: Robust Face Restoration and Enhancement Network"
|
|
@@ -230,7 +233,7 @@ Redistribution and use for non-commercial purposes should follow this license.
|
|
| 230 |
|
| 231 |
If you have any questions, please feel free to reach me out at <b>shangchenzhou@gmail.com</b>.
|
| 232 |
|
| 233 |
-
:
|
| 105 |
"""Run a single prediction on the model"""
|
| 106 |
+
try: # global try
|
| 107 |
+
# take the default setting for the demo
|
| 108 |
+
has_aligned = False
|
| 109 |
+
only_center_face = False
|
| 110 |
+
draw_box = False
|
| 111 |
+
detection_model = "retinaface_resnet50"
|
| 112 |
+
|
| 113 |
+
upscale = int(upscale) # covert type to int
|
| 114 |
+
face_helper = FaceRestoreHelper(
|
| 115 |
+
upscale,
|
| 116 |
+
face_size=512,
|
| 117 |
+
crop_ratio=(1, 1),
|
| 118 |
+
det_model=detection_model,
|
| 119 |
+
save_ext="png",
|
| 120 |
+
use_parse=True,
|
| 121 |
+
device=device,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
)
|
| 123 |
+
bg_upsampler = upsampler if background_enhance else None
|
| 124 |
+
face_upsampler = upsampler if face_upsample else None
|
| 125 |
+
|
| 126 |
+
img = cv2.imread(str(image), cv2.IMREAD_COLOR)
|
| 127 |
+
|
| 128 |
+
if has_aligned:
|
| 129 |
+
# the input faces are already cropped and aligned
|
| 130 |
+
img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
|
| 131 |
+
face_helper.is_gray = is_gray(img, threshold=5)
|
| 132 |
+
if face_helper.is_gray:
|
| 133 |
+
print('Grayscale input: True')
|
| 134 |
+
face_helper.cropped_faces = [img]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
else:
|
| 136 |
+
face_helper.read_image(img)
|
| 137 |
+
# get face landmarks for each face
|
| 138 |
+
num_det_faces = face_helper.get_face_landmarks_5(
|
| 139 |
+
only_center_face=only_center_face, resize=640, eye_dist_threshold=5
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
)
|
| 141 |
+
print(f"\tdetect {num_det_faces} faces")
|
| 142 |
+
# align and warp each face
|
| 143 |
+
face_helper.align_warp_face()
|
| 144 |
+
|
| 145 |
+
# face restoration for each cropped face
|
| 146 |
+
for idx, cropped_face in enumerate(face_helper.cropped_faces):
|
| 147 |
+
# prepare data
|
| 148 |
+
cropped_face_t = img2tensor(
|
| 149 |
+
cropped_face / 255.0, bgr2rgb=True, float32=True
|
| 150 |
)
|
| 151 |
+
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
|
| 152 |
+
cropped_face_t = cropped_face_t.unsqueeze(0).to(device)
|
| 153 |
+
|
| 154 |
+
try:
|
| 155 |
+
with torch.no_grad():
|
| 156 |
+
output = codeformer_net(
|
| 157 |
+
cropped_face_t, w=codeformer_fidelity, adain=True
|
| 158 |
+
)[0]
|
| 159 |
+
restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
|
| 160 |
+
del output
|
| 161 |
+
torch.cuda.empty_cache()
|
| 162 |
+
except Exception as error:
|
| 163 |
+
print(f"\tFailed inference for CodeFormer: {error}")
|
| 164 |
+
restored_face = tensor2img(
|
| 165 |
+
cropped_face_t, rgb2bgr=True, min_max=(-1, 1)
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
restored_face = restored_face.astype("uint8")
|
| 169 |
+
face_helper.add_restored_face(restored_face)
|
| 170 |
+
|
| 171 |
+
# paste_back
|
| 172 |
+
if not has_aligned:
|
| 173 |
+
# upsample the background
|
| 174 |
+
if bg_upsampler is not None:
|
| 175 |
+
# Now only support RealESRGAN for upsampling background
|
| 176 |
+
bg_img = bg_upsampler.enhance(img, outscale=upscale)[0]
|
| 177 |
+
else:
|
| 178 |
+
bg_img = None
|
| 179 |
+
face_helper.get_inverse_affine(None)
|
| 180 |
+
# paste each restored face to the input image
|
| 181 |
+
if face_upsample and face_upsampler is not None:
|
| 182 |
+
restored_img = face_helper.paste_faces_to_input_image(
|
| 183 |
+
upsample_img=bg_img,
|
| 184 |
+
draw_box=draw_box,
|
| 185 |
+
face_upsampler=face_upsampler,
|
| 186 |
+
)
|
| 187 |
+
else:
|
| 188 |
+
restored_img = face_helper.paste_faces_to_input_image(
|
| 189 |
+
upsample_img=bg_img, draw_box=draw_box
|
| 190 |
+
)
|
| 191 |
+
|
| 192 |
+
# save restored img
|
| 193 |
+
save_path = f'output/out.png'
|
| 194 |
+
imwrite(restored_img, str(save_path))
|
| 195 |
+
|
| 196 |
+
restored_img = cv2.cvtColor(restored_img, cv2.COLOR_BGR2RGB)
|
| 197 |
+
return restored_img, save_path
|
| 198 |
+
except Exception as error:
|
| 199 |
+
print('global exception', error)
|
| 200 |
+
return None, None
|
| 201 |
|
| 202 |
|
| 203 |
title = "CodeFormer: Robust Face Restoration and Enhancement Network"
|
|
|
|
| 233 |
|
| 234 |
If you have any questions, please feel free to reach me out at <b>shangchenzhou@gmail.com</b>.
|
| 235 |
|
| 236 |
+

|
| 237 |
"""
|
| 238 |
|
| 239 |
demo = gr.Interface(
|