Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
import os
|
| 3 |
+
import json
|
| 4 |
+
import time
|
| 5 |
+
import torch
|
| 6 |
+
from PIL import Image
|
| 7 |
+
from tqdm import tqdm
|
| 8 |
+
import gradio as gr
|
| 9 |
+
|
| 10 |
+
from safetensors.torch import save_file
|
| 11 |
+
from src.pipeline import FluxPipeline
|
| 12 |
+
from src.transformer_flux import FluxTransformer2DModel
|
| 13 |
+
from src.lora_helper import set_single_lora, set_multi_lora, unset_lora
|
| 14 |
+
|
| 15 |
+
# Initialize the image processor
|
| 16 |
+
base_path = "black-forest-labs/FLUX.1-dev"
|
| 17 |
+
lora_base_path = "./models"
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
pipe = FluxPipeline.from_pretrained(base_path, torch_dtype=torch.bfloat16)
|
| 21 |
+
transformer = FluxTransformer2DModel.from_pretrained(base_path, subfolder="transformer", torch_dtype=torch.bfloat16)
|
| 22 |
+
pipe.transformer = transformer
|
| 23 |
+
pipe.to("cuda")
|
| 24 |
+
|
| 25 |
+
def clear_cache(transformer):
|
| 26 |
+
for name, attn_processor in transformer.attn_processors.items():
|
| 27 |
+
attn_processor.bank_kv.clear()
|
| 28 |
+
|
| 29 |
+
# Define the Gradio interface
|
| 30 |
+
@spaces.GPU()
|
| 31 |
+
def single_condition_generate_image(prompt, subject_img, spatial_img, height, width, seed, control_type):
|
| 32 |
+
# Set the control type
|
| 33 |
+
if control_type == "Ghibli":
|
| 34 |
+
lora_path = os.path.join(lora_base_path, "Ghibli.safetensors")
|
| 35 |
+
set_single_lora(pipe.transformer, lora_path, lora_weights=[1], cond_size=512)
|
| 36 |
+
|
| 37 |
+
# Process the image
|
| 38 |
+
subject_imgs = [subject_img] if subject_img else []
|
| 39 |
+
spatial_imgs = [spatial_img] if spatial_img else []
|
| 40 |
+
image = pipe(
|
| 41 |
+
prompt,
|
| 42 |
+
height=int(height),
|
| 43 |
+
width=int(width),
|
| 44 |
+
guidance_scale=3.5,
|
| 45 |
+
num_inference_steps=25,
|
| 46 |
+
max_sequence_length=512,
|
| 47 |
+
generator=torch.Generator("cpu").manual_seed(seed),
|
| 48 |
+
subject_images=subject_imgs,
|
| 49 |
+
spatial_images=spatial_imgs,
|
| 50 |
+
cond_size=512,
|
| 51 |
+
).images[0]
|
| 52 |
+
clear_cache(pipe.transformer)
|
| 53 |
+
return image
|
| 54 |
+
|
| 55 |
+
# Define the Gradio interface components
|
| 56 |
+
control_types = ["Ghibli"]
|
| 57 |
+
|
| 58 |
+
# Example data
|
| 59 |
+
single_examples = [
|
| 60 |
+
["Ghibli Studio style, Charming hand-drawn anime-style illustration", None, Image.open("./test_imgs/00.png"), 768, 768, 5, "Ghibli"],
|
| 61 |
+
["Ghibli Studio style, Charming hand-drawn anime-style illustration", None, Image.open("./test_imgs/02.png"), 768, 768, 42, "Ghibli"],
|
| 62 |
+
["Ghibli Studio style, Charming hand-drawn anime-style illustration", None, Image.open("./test_imgs/03.png"), 768, 768, 1, "Ghibli"],
|
| 63 |
+
]
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
# Create the Gradio Blocks interface
|
| 67 |
+
with gr.Blocks() as demo:
|
| 68 |
+
gr.Markdown("# Ghibli Studio Control Image Generation with EasyControl")
|
| 69 |
+
gr.Markdown("Generate images using EasyControl with Ghibli control LoRAs.(Due to hardware constraints, only low-resolution images can be generated. For high-resolution (1024+), please set up your own environment.)")
|
| 70 |
+
|
| 71 |
+
with gr.Tab("Ghibli Condition Generation"):
|
| 72 |
+
with gr.Row():
|
| 73 |
+
with gr.Column():
|
| 74 |
+
prompt = gr.Textbox(label="Prompt")
|
| 75 |
+
spatial_img = gr.Image(label="Ghibli Image", type="pil") # 上传图像文件
|
| 76 |
+
height = gr.Slider(minimum=256, maximum=1024, step=64, label="Height", value=768)
|
| 77 |
+
width = gr.Slider(minimum=256, maximum=1024, step=64, label="Width", value=768)
|
| 78 |
+
seed = gr.Number(label="Seed", value=42)
|
| 79 |
+
control_type = gr.Dropdown(choices=control_types, label="Control Type")
|
| 80 |
+
single_generate_btn = gr.Button("Generate Image")
|
| 81 |
+
with gr.Column():
|
| 82 |
+
single_output_image = gr.Image(label="Generated Image")
|
| 83 |
+
|
| 84 |
+
# Add examples for Single Condition Generation
|
| 85 |
+
gr.Examples(
|
| 86 |
+
examples=single_examples,
|
| 87 |
+
inputs=[prompt, None, spatial_img, height, width, seed, control_type],
|
| 88 |
+
outputs=single_output_image,
|
| 89 |
+
fn=single_condition_generate_image,
|
| 90 |
+
cache_examples=False, # 缓存示例结果以加快加载速度
|
| 91 |
+
label="Single Condition Examples"
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
# Link the buttons to the functions
|
| 95 |
+
single_generate_btn.click(
|
| 96 |
+
single_condition_generate_image,
|
| 97 |
+
inputs=[prompt, None, spatial_img, height, width, seed, control_type],
|
| 98 |
+
outputs=single_output_image
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
# Launch the Gradio app
|
| 102 |
+
demo.queue().launch()
|