Spaces:
Runtime error
Runtime error
Tobias Cornille
commited on
Commit
·
94040eb
1
Parent(s):
d197a83
Add Segments.ai output to Gradio
Browse files
app.py
CHANGED
|
@@ -18,21 +18,21 @@ if not os.path.exists("./sam_vit_h_4b8939.pth"):
|
|
| 18 |
)
|
| 19 |
print(f"wget sam_vit_h_4b8939.pth result = {result}")
|
| 20 |
|
| 21 |
-
import gradio as gr
|
| 22 |
|
| 23 |
import argparse
|
| 24 |
import random
|
| 25 |
import warnings
|
|
|
|
|
|
|
| 26 |
|
|
|
|
| 27 |
import numpy as np
|
| 28 |
-
import matplotlib.pyplot as plt
|
| 29 |
import torch
|
| 30 |
from torch import nn
|
| 31 |
import torch.nn.functional as F
|
| 32 |
from scipy import ndimage
|
| 33 |
from PIL import Image
|
| 34 |
from huggingface_hub import hf_hub_download
|
| 35 |
-
from segments.export import colorize
|
| 36 |
from segments.utils import bitmap2file
|
| 37 |
|
| 38 |
# Grounding DINO
|
|
@@ -262,6 +262,28 @@ def sam_mask_from_points(predictor, image_array, points):
|
|
| 262 |
return upsampled_pred
|
| 263 |
|
| 264 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 265 |
def generate_panoptic_mask(
|
| 266 |
image,
|
| 267 |
thing_category_names_string,
|
|
@@ -271,26 +293,44 @@ def generate_panoptic_mask(
|
|
| 271 |
segmentation_background_threshold=0.1,
|
| 272 |
shrink_kernel_size=20,
|
| 273 |
num_samples_factor=1000,
|
|
|
|
| 274 |
):
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 288 |
|
| 289 |
image = image.convert("RGB")
|
| 290 |
image_array = np.asarray(image)
|
| 291 |
|
| 292 |
# detect boxes for "thing" categories using Grounding DINO
|
| 293 |
-
thing_boxes,
|
| 294 |
dino_model,
|
| 295 |
image,
|
| 296 |
image_array,
|
|
@@ -360,14 +400,21 @@ def generate_panoptic_mask(
|
|
| 360 |
panoptic_names = (
|
| 361 |
["background"]
|
| 362 |
+ stuff_category_names
|
| 363 |
-
+ [category_names[category_id] for category_id in
|
| 364 |
)
|
| 365 |
subsection_label_pairs = [
|
| 366 |
(panoptic_bool_masks[i], panoptic_name)
|
| 367 |
for i, panoptic_name in enumerate(panoptic_names)
|
| 368 |
]
|
| 369 |
|
| 370 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 371 |
|
| 372 |
|
| 373 |
config_file = "GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py"
|
|
@@ -465,9 +512,27 @@ if __name__ == "__main__":
|
|
| 465 |
value=1000,
|
| 466 |
step=1,
|
| 467 |
)
|
|
|
|
|
|
|
|
|
|
| 468 |
|
| 469 |
with gr.Column():
|
| 470 |
annotated_image = gr.AnnotatedImage()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 471 |
|
| 472 |
examples = gr.Examples(
|
| 473 |
examples=[
|
|
@@ -475,21 +540,11 @@ if __name__ == "__main__":
|
|
| 475 |
"a2d2.png",
|
| 476 |
"car, bus, person",
|
| 477 |
"road, sky, buildings, sidewalk",
|
| 478 |
-
0.3,
|
| 479 |
-
0.25,
|
| 480 |
-
0.1,
|
| 481 |
-
20,
|
| 482 |
-
1000,
|
| 483 |
],
|
| 484 |
[
|
| 485 |
"bxl.png",
|
| 486 |
"car, tram, motorcycle, person",
|
| 487 |
"road, buildings, sky",
|
| 488 |
-
0.3,
|
| 489 |
-
0.25,
|
| 490 |
-
0.1,
|
| 491 |
-
20,
|
| 492 |
-
1000,
|
| 493 |
],
|
| 494 |
],
|
| 495 |
fn=generate_panoptic_mask,
|
|
@@ -497,13 +552,8 @@ if __name__ == "__main__":
|
|
| 497 |
input_image,
|
| 498 |
thing_category_names_string,
|
| 499 |
stuff_category_names_string,
|
| 500 |
-
box_threshold,
|
| 501 |
-
text_threshold,
|
| 502 |
-
segmentation_background_threshold,
|
| 503 |
-
shrink_kernel_size,
|
| 504 |
-
num_samples_factor,
|
| 505 |
],
|
| 506 |
-
outputs=[annotated_image],
|
| 507 |
cache_examples=True,
|
| 508 |
)
|
| 509 |
|
|
@@ -518,8 +568,10 @@ if __name__ == "__main__":
|
|
| 518 |
segmentation_background_threshold,
|
| 519 |
shrink_kernel_size,
|
| 520 |
num_samples_factor,
|
|
|
|
| 521 |
],
|
| 522 |
-
outputs=[annotated_image],
|
|
|
|
| 523 |
)
|
| 524 |
|
| 525 |
block.launch(server_name="0.0.0.0", debug=args.debug, share=args.share)
|
|
|
|
| 18 |
)
|
| 19 |
print(f"wget sam_vit_h_4b8939.pth result = {result}")
|
| 20 |
|
|
|
|
| 21 |
|
| 22 |
import argparse
|
| 23 |
import random
|
| 24 |
import warnings
|
| 25 |
+
import json
|
| 26 |
+
import tempfile
|
| 27 |
|
| 28 |
+
import gradio as gr
|
| 29 |
import numpy as np
|
|
|
|
| 30 |
import torch
|
| 31 |
from torch import nn
|
| 32 |
import torch.nn.functional as F
|
| 33 |
from scipy import ndimage
|
| 34 |
from PIL import Image
|
| 35 |
from huggingface_hub import hf_hub_download
|
|
|
|
| 36 |
from segments.utils import bitmap2file
|
| 37 |
|
| 38 |
# Grounding DINO
|
|
|
|
| 262 |
return upsampled_pred
|
| 263 |
|
| 264 |
|
| 265 |
+
def inds_to_segments_format(
|
| 266 |
+
panoptic_inds, thing_category_ids, stuff_category_ids, output_file
|
| 267 |
+
):
|
| 268 |
+
panoptic_inds_array = panoptic_inds.numpy().astype(np.uint32)
|
| 269 |
+
bitmap_file = bitmap2file(panoptic_inds_array, is_segmentation_bitmap=True)
|
| 270 |
+
output_file.write(bitmap_file)
|
| 271 |
+
|
| 272 |
+
unique_inds = np.unique(panoptic_inds_array)
|
| 273 |
+
stuff_annotations = [
|
| 274 |
+
{"id": i + 1, "category_id": stuff_category_id}
|
| 275 |
+
for i, stuff_category_id in enumerate(stuff_category_ids)
|
| 276 |
+
if i in unique_inds
|
| 277 |
+
]
|
| 278 |
+
thing_annotations = [
|
| 279 |
+
{"id": len(stuff_category_ids) + 1 + i, "category_id": thing_category_id}
|
| 280 |
+
for i, thing_category_id in enumerate(thing_category_ids)
|
| 281 |
+
]
|
| 282 |
+
annotations = stuff_annotations + thing_annotations
|
| 283 |
+
|
| 284 |
+
return annotations
|
| 285 |
+
|
| 286 |
+
|
| 287 |
def generate_panoptic_mask(
|
| 288 |
image,
|
| 289 |
thing_category_names_string,
|
|
|
|
| 293 |
segmentation_background_threshold=0.1,
|
| 294 |
shrink_kernel_size=20,
|
| 295 |
num_samples_factor=1000,
|
| 296 |
+
task_attributes_json=None,
|
| 297 |
):
|
| 298 |
+
if task_attributes_json is not None:
|
| 299 |
+
task_attributes = json.loads(task_attributes_json)
|
| 300 |
+
categories = task_attributes["categories"]
|
| 301 |
+
category_name_to_id = {
|
| 302 |
+
category["name"]: category["id"] for category in categories
|
| 303 |
+
}
|
| 304 |
+
# split the categories into "stuff" categories (regions w/o instances)
|
| 305 |
+
# and "thing" categories (objects/instances)
|
| 306 |
+
stuff_categories = [
|
| 307 |
+
category for category in categories if not category["has_instances"]
|
| 308 |
+
]
|
| 309 |
+
thing_categories = [
|
| 310 |
+
category for category in categories if category["has_instances"]
|
| 311 |
+
]
|
| 312 |
+
stuff_category_names = [category["name"] for category in stuff_categories]
|
| 313 |
+
thing_category_names = [category["name"] for category in thing_categories]
|
| 314 |
+
else:
|
| 315 |
+
# parse inputs
|
| 316 |
+
thing_category_names = [
|
| 317 |
+
thing_category_name.strip()
|
| 318 |
+
for thing_category_name in thing_category_names_string.split(",")
|
| 319 |
+
]
|
| 320 |
+
stuff_category_names = [
|
| 321 |
+
stuff_category_name.strip()
|
| 322 |
+
for stuff_category_name in stuff_category_names_string.split(",")
|
| 323 |
+
]
|
| 324 |
+
category_names = thing_category_names + stuff_category_names
|
| 325 |
+
category_name_to_id = {
|
| 326 |
+
category_name: i for i, category_name in enumerate(category_names)
|
| 327 |
+
}
|
| 328 |
|
| 329 |
image = image.convert("RGB")
|
| 330 |
image_array = np.asarray(image)
|
| 331 |
|
| 332 |
# detect boxes for "thing" categories using Grounding DINO
|
| 333 |
+
thing_boxes, thing_category_ids = dino_detection(
|
| 334 |
dino_model,
|
| 335 |
image,
|
| 336 |
image_array,
|
|
|
|
| 400 |
panoptic_names = (
|
| 401 |
["background"]
|
| 402 |
+ stuff_category_names
|
| 403 |
+
+ [category_names[category_id] for category_id in thing_category_ids]
|
| 404 |
)
|
| 405 |
subsection_label_pairs = [
|
| 406 |
(panoptic_bool_masks[i], panoptic_name)
|
| 407 |
for i, panoptic_name in enumerate(panoptic_names)
|
| 408 |
]
|
| 409 |
|
| 410 |
+
temp_file = tempfile.NamedTemporaryFile(suffix=".png")
|
| 411 |
+
stuff_category_ids = [category_name_to_id[name] for name in stuff_category_names]
|
| 412 |
+
annotations = inds_to_segments_format(
|
| 413 |
+
panoptic_inds, thing_category_ids, stuff_category_ids, temp_file
|
| 414 |
+
)
|
| 415 |
+
annotations_json = json.dumps(annotations)
|
| 416 |
+
|
| 417 |
+
return (image_array, subsection_label_pairs), temp_file.name, annotations_json
|
| 418 |
|
| 419 |
|
| 420 |
config_file = "GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py"
|
|
|
|
| 512 |
value=1000,
|
| 513 |
step=1,
|
| 514 |
)
|
| 515 |
+
task_attributes_json = gr.Textbox(
|
| 516 |
+
label="Task attributes JSON",
|
| 517 |
+
)
|
| 518 |
|
| 519 |
with gr.Column():
|
| 520 |
annotated_image = gr.AnnotatedImage()
|
| 521 |
+
with gr.Accordion("Segmentation bitmap", open=False):
|
| 522 |
+
segmentation_bitmap_text = gr.Markdown(
|
| 523 |
+
"""
|
| 524 |
+
The segmentation bitmap is a 32-bit RGBA png image which contains the segmentation masks.
|
| 525 |
+
The alpha channel is set to 255, and the remaining 24-bit values in the RGB channels correspond to the object ids in the annotations list.
|
| 526 |
+
Unlabeled regions have a value of 0.
|
| 527 |
+
Because of the large dynamic range, these png images may appear black in an image viewer.
|
| 528 |
+
"""
|
| 529 |
+
)
|
| 530 |
+
segmentation_bitmap = gr.Image(
|
| 531 |
+
type="filepath", label="Segmentation bitmap"
|
| 532 |
+
)
|
| 533 |
+
annotations_json = gr.Textbox(
|
| 534 |
+
label="Annotations JSON",
|
| 535 |
+
)
|
| 536 |
|
| 537 |
examples = gr.Examples(
|
| 538 |
examples=[
|
|
|
|
| 540 |
"a2d2.png",
|
| 541 |
"car, bus, person",
|
| 542 |
"road, sky, buildings, sidewalk",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 543 |
],
|
| 544 |
[
|
| 545 |
"bxl.png",
|
| 546 |
"car, tram, motorcycle, person",
|
| 547 |
"road, buildings, sky",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 548 |
],
|
| 549 |
],
|
| 550 |
fn=generate_panoptic_mask,
|
|
|
|
| 552 |
input_image,
|
| 553 |
thing_category_names_string,
|
| 554 |
stuff_category_names_string,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 555 |
],
|
| 556 |
+
outputs=[annotated_image, segmentation_bitmap, annotations_json],
|
| 557 |
cache_examples=True,
|
| 558 |
)
|
| 559 |
|
|
|
|
| 568 |
segmentation_background_threshold,
|
| 569 |
shrink_kernel_size,
|
| 570 |
num_samples_factor,
|
| 571 |
+
task_attributes_json,
|
| 572 |
],
|
| 573 |
+
outputs=[annotated_image, segmentation_bitmap, annotations_json],
|
| 574 |
+
api_name="segment",
|
| 575 |
)
|
| 576 |
|
| 577 |
block.launch(server_name="0.0.0.0", debug=args.debug, share=args.share)
|