Spaces:
Runtime error
Runtime error
Tobias Cornille
commited on
Update GroundingDINO
Browse files- GroundingDINO/LICENSE +1 -1
- GroundingDINO/README.md +245 -41
- GroundingDINO/groundingdino/config/{GroundingDINO_SwinB.cfg.py → GroundingDINO_SwinB_cfg.py} +0 -0
- GroundingDINO/groundingdino/config/__init__.py +0 -0
- GroundingDINO/groundingdino/datasets/__pycache__/__init__.cpython-310.pyc +0 -0
- GroundingDINO/groundingdino/datasets/__pycache__/transforms.cpython-310.pyc +0 -0
- GroundingDINO/groundingdino/datasets/cocogrounding_eval.py +269 -0
- GroundingDINO/groundingdino/models/GroundingDINO/__pycache__/__init__.cpython-310.pyc +0 -0
- GroundingDINO/groundingdino/models/GroundingDINO/__pycache__/bertwarper.cpython-310.pyc +0 -0
- GroundingDINO/groundingdino/models/GroundingDINO/__pycache__/fuse_modules.cpython-310.pyc +0 -0
- GroundingDINO/groundingdino/models/GroundingDINO/__pycache__/groundingdino.cpython-310.pyc +0 -0
- GroundingDINO/groundingdino/models/GroundingDINO/__pycache__/ms_deform_attn.cpython-310.pyc +0 -0
- GroundingDINO/groundingdino/models/GroundingDINO/__pycache__/transformer.cpython-310.pyc +0 -0
- GroundingDINO/groundingdino/models/GroundingDINO/__pycache__/transformer_vanilla.cpython-310.pyc +0 -0
- GroundingDINO/groundingdino/models/GroundingDINO/__pycache__/utils.cpython-310.pyc +0 -0
- GroundingDINO/groundingdino/models/GroundingDINO/backbone/__pycache__/__init__.cpython-310.pyc +0 -0
- GroundingDINO/groundingdino/models/GroundingDINO/backbone/__pycache__/backbone.cpython-310.pyc +0 -0
- GroundingDINO/groundingdino/models/GroundingDINO/backbone/__pycache__/position_encoding.cpython-310.pyc +0 -0
- GroundingDINO/groundingdino/models/GroundingDINO/backbone/__pycache__/swin_transformer.cpython-310.pyc +0 -0
- GroundingDINO/groundingdino/models/GroundingDINO/groundingdino.py +25 -8
- GroundingDINO/groundingdino/models/__pycache__/__init__.cpython-310.pyc +0 -0
- GroundingDINO/groundingdino/models/__pycache__/registry.cpython-310.pyc +0 -0
- GroundingDINO/groundingdino/util/__pycache__/__init__.cpython-310.pyc +0 -0
- GroundingDINO/groundingdino/util/__pycache__/box_ops.cpython-310.pyc +0 -0
- GroundingDINO/groundingdino/util/__pycache__/get_tokenlizer.cpython-310.pyc +0 -0
- GroundingDINO/groundingdino/util/__pycache__/inference.cpython-310.pyc +0 -0
- GroundingDINO/groundingdino/util/__pycache__/misc.cpython-310.pyc +0 -0
- GroundingDINO/groundingdino/util/__pycache__/slconfig.cpython-310.pyc +0 -0
- GroundingDINO/groundingdino/util/__pycache__/utils.cpython-310.pyc +0 -0
- GroundingDINO/groundingdino/util/__pycache__/visualizer.cpython-310.pyc +0 -0
- GroundingDINO/groundingdino/util/__pycache__/vl_utils.cpython-310.pyc +0 -0
- GroundingDINO/groundingdino/util/get_tokenlizer.py +5 -2
- GroundingDINO/groundingdino/util/inference.py +180 -7
- GroundingDINO/groundingdino/util/slconfig.py +2 -2
- GroundingDINO/groundingdino/util/utils.py +3 -1
- GroundingDINO/requirements.txt +2 -2
- GroundingDINO/setup.py +13 -1
GroundingDINO/LICENSE
CHANGED
|
@@ -186,7 +186,7 @@
|
|
| 186 |
same "printed page" as the copyright notice for easier
|
| 187 |
identification within third-party archives.
|
| 188 |
|
| 189 |
-
Copyright
|
| 190 |
|
| 191 |
Licensed under the Apache License, Version 2.0 (the "License");
|
| 192 |
you may not use this file except in compliance with the License.
|
|
|
|
| 186 |
same "printed page" as the copyright notice for easier
|
| 187 |
identification within third-party archives.
|
| 188 |
|
| 189 |
+
Copyright 2023 - present, IDEA Research.
|
| 190 |
|
| 191 |
Licensed under the Apache License, Version 2.0 (the "License");
|
| 192 |
you may not use this file except in compliance with the License.
|
GroundingDINO/README.md
CHANGED
|
@@ -1,78 +1,269 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
[](https://arxiv.org/abs/2303.05499)
|
| 6 |
-
[](https://youtu.be/wxWDt5UiwY8)
|
| 7 |
-
|
| 8 |
-
|
|
|
|
|
|
|
| 9 |
[](https://huggingface.co/spaces/ShilongLiu/Grounding_DINO_demo)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
-
[
|
| 12 |
-
[](https://paperswithcode.com/sota/zero-shot-object-detection-on-odinw?p=grounding-dino-marrying-dino-with-grounded) \
|
| 13 |
-
[](https://paperswithcode.com/sota/object-detection-on-coco-minival?p=grounding-dino-marrying-dino-with-grounded) \
|
| 14 |
-
[](https://paperswithcode.com/sota/object-detection-on-coco?p=grounding-dino-marrying-dino-with-grounded)
|
| 15 |
|
| 16 |
|
| 17 |
|
| 18 |
-
Official PyTorch implementation of [Grounding DINO](https://arxiv.org/abs/2303.05499), a stronger open-set object detector. Code is available now!
|
| 19 |
|
| 20 |
|
| 21 |
-
## Highlight
|
| 22 |
|
| 23 |
- **Open-Set Detection.** Detect **everything** with language!
|
| 24 |
-
- **High
|
| 25 |
- **Flexible.** Collaboration with Stable Diffusion for Image Editting.
|
| 26 |
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
<details open>
|
| 35 |
<summary><font size="4">
|
| 36 |
Description
|
| 37 |
</font></summary>
|
|
|
|
| 38 |
<img src=".asset/hero_figure.png" alt="ODinW" width="100%">
|
|
|
|
|
|
|
| 39 |
</details>
|
| 40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
-
|
| 43 |
-
## TODO
|
| 44 |
|
| 45 |
- [x] Release inference code and demo.
|
| 46 |
- [x] Release checkpoints.
|
| 47 |
-
- [
|
| 48 |
- [ ] Release training codes.
|
| 49 |
|
| 50 |
-
## Install
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
-
|
| 53 |
|
| 54 |
```bash
|
| 55 |
pip install -e .
|
| 56 |
```
|
| 57 |
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
|
|
|
| 60 |
```bash
|
| 61 |
-
CUDA_VISIBLE_DEVICES=
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
|
|
|
| 68 |
```
|
|
|
|
|
|
|
| 69 |
See the `demo/inference_on_a_image.py` for more details.
|
| 70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
**Web UI**
|
| 72 |
|
| 73 |
We also provide a demo code to integrate Grounding DINO with Gradio Web UI. See the file `demo/gradio_app.py` for more details.
|
| 74 |
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
<!-- insert a table -->
|
| 78 |
<table>
|
|
@@ -94,13 +285,22 @@ We also provide a demo code to integrate Grounding DINO with Gradio Web UI. See
|
|
| 94 |
<td>Swin-T</td>
|
| 95 |
<td>O365,GoldG,Cap4M</td>
|
| 96 |
<td>48.4 (zero-shot) / 57.2 (fine-tune)</td>
|
| 97 |
-
<td><a href="https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha/groundingdino_swint_ogc.pth">
|
| 98 |
<td><a href="https://github.com/IDEA-Research/GroundingDINO/blob/main/groundingdino/config/GroundingDINO_SwinT_OGC.py">link</a></td>
|
| 99 |
</tr>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
</tbody>
|
| 101 |
</table>
|
| 102 |
|
| 103 |
-
## Results
|
| 104 |
|
| 105 |
<details open>
|
| 106 |
<summary><font size="4">
|
|
@@ -120,24 +320,27 @@ ODinW Object Detection Results
|
|
| 120 |
<summary><font size="4">
|
| 121 |
Marrying Grounding DINO with <a href="https://github.com/Stability-AI/StableDiffusion">Stable Diffusion</a> for Image Editing
|
| 122 |
</font></summary>
|
|
|
|
| 123 |
<img src=".asset/GD_SD.png" alt="GD_SD" width="100%">
|
| 124 |
</details>
|
| 125 |
|
|
|
|
| 126 |
<details open>
|
| 127 |
<summary><font size="4">
|
| 128 |
-
Marrying Grounding DINO with <a href="https://github.com/gligen/GLIGEN">GLIGEN</a> for more Detailed Image Editing
|
| 129 |
</font></summary>
|
|
|
|
| 130 |
<img src=".asset/GD_GLIGEN.png" alt="GD_GLIGEN" width="100%">
|
| 131 |
</details>
|
| 132 |
|
| 133 |
-
## Model
|
| 134 |
|
| 135 |
Includes: a text backbone, an image backbone, a feature enhancer, a language-guided query selection, and a cross-modality decoder.
|
| 136 |
|
| 137 |

|
| 138 |
|
| 139 |
|
| 140 |
-
## Acknowledgement
|
| 141 |
|
| 142 |
Our model is related to [DINO](https://github.com/IDEA-Research/DINO) and [GLIP](https://github.com/microsoft/GLIP). Thanks for their great work!
|
| 143 |
|
|
@@ -146,14 +349,15 @@ We also thank great previous work including DETR, Deformable DETR, SMCA, Conditi
|
|
| 146 |
Thanks [Stable Diffusion](https://github.com/Stability-AI/StableDiffusion) and [GLIGEN](https://github.com/gligen/GLIGEN) for their awesome models.
|
| 147 |
|
| 148 |
|
| 149 |
-
## Citation
|
| 150 |
|
| 151 |
If you find our work helpful for your research, please consider citing the following BibTeX entry.
|
| 152 |
|
| 153 |
```bibtex
|
| 154 |
-
@
|
| 155 |
-
title={Grounding
|
| 156 |
-
author={Shilong
|
|
|
|
| 157 |
year={2023}
|
| 158 |
}
|
| 159 |
```
|
|
|
|
| 1 |
+
<div align="center">
|
| 2 |
+
<img src="./.asset/grounding_dino_logo.png" width="30%">
|
| 3 |
+
</div>
|
| 4 |
|
| 5 |
+
# :sauropod: Grounding DINO
|
| 6 |
|
| 7 |
+
[](https://paperswithcode.com/sota/zero-shot-object-detection-on-mscoco?p=grounding-dino-marrying-dino-with-grounded) [](https://paperswithcode.com/sota/zero-shot-object-detection-on-odinw?p=grounding-dino-marrying-dino-with-grounded) \
|
| 8 |
+
[](https://paperswithcode.com/sota/object-detection-on-coco-minival?p=grounding-dino-marrying-dino-with-grounded) [](https://paperswithcode.com/sota/object-detection-on-coco?p=grounding-dino-marrying-dino-with-grounded)
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
**[IDEA-CVR, IDEA-Research](https://github.com/IDEA-Research)**
|
| 12 |
+
|
| 13 |
+
[Shilong Liu](http://www.lsl.zone/), [Zhaoyang Zeng](https://scholar.google.com/citations?user=U_cvvUwAAAAJ&hl=zh-CN&oi=ao), [Tianhe Ren](https://rentainhe.github.io/), [Feng Li](https://scholar.google.com/citations?user=ybRe9GcAAAAJ&hl=zh-CN), [Hao Zhang](https://scholar.google.com/citations?user=B8hPxMQAAAAJ&hl=zh-CN), [Jie Yang](https://github.com/yangjie-cv), [Chunyuan Li](https://scholar.google.com/citations?user=Zd7WmXUAAAAJ&hl=zh-CN&oi=ao), [Jianwei Yang](https://jwyang.github.io/), [Hang Su](https://scholar.google.com/citations?hl=en&user=dxN1_X0AAAAJ&view_op=list_works&sortby=pubdate), [Jun Zhu](https://scholar.google.com/citations?hl=en&user=axsP38wAAAAJ), [Lei Zhang](https://www.leizhang.org/)<sup>:email:</sup>.
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
[[`Paper`](https://arxiv.org/abs/2303.05499)] [[`Demo`](https://huggingface.co/spaces/ShilongLiu/Grounding_DINO_demo)] [[`BibTex`](#black_nib-citation)]
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
PyTorch implementation and pretrained models for Grounding DINO. For details, see the paper **[Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection](https://arxiv.org/abs/2303.05499)**.
|
| 20 |
+
|
| 21 |
+
## :sun_with_face: Helpful Tutorial
|
| 22 |
+
|
| 23 |
+
- :grapes: [[Read our arXiv Paper](https://arxiv.org/abs/2303.05499)]
|
| 24 |
+
- :apple: [[Watch our simple introduction video on YouTube](https://youtu.be/wxWDt5UiwY8)]
|
| 25 |
+
- :blossom: [[Try the Colab Demo](https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/zero-shot-object-detection-with-grounding-dino.ipynb)]
|
| 26 |
+
- :sunflower: [[Try our Official Huggingface Demo](https://huggingface.co/spaces/ShilongLiu/Grounding_DINO_demo)]
|
| 27 |
+
- :maple_leaf: [[Watch the Step by Step Tutorial about GroundingDINO by Roboflow AI](https://youtu.be/cMa77r3YrDk)]
|
| 28 |
+
- :mushroom: [[GroundingDINO: Automated Dataset Annotation and Evaluation by Roboflow AI](https://youtu.be/C4NqaRBz_Kw)]
|
| 29 |
+
- :hibiscus: [[Accelerate Image Annotation with SAM and GroundingDINO by Roboflow AI](https://youtu.be/oEQYStnF2l8)]
|
| 30 |
+
- :white_flower: [[Autodistill: Train YOLOv8 with ZERO Annotations based on Grounding-DINO and Grounded-SAM by Roboflow AI](https://github.com/autodistill/autodistill)]
|
| 31 |
+
|
| 32 |
+
<!-- Grounding DINO Methods |
|
| 33 |
[](https://arxiv.org/abs/2303.05499)
|
| 34 |
+
[](https://youtu.be/wxWDt5UiwY8) -->
|
| 35 |
+
|
| 36 |
+
<!-- Grounding DINO Demos |
|
| 37 |
+
[](https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/zero-shot-object-detection-with-grounding-dino.ipynb) -->
|
| 38 |
+
<!-- [](https://youtu.be/cMa77r3YrDk)
|
| 39 |
[](https://huggingface.co/spaces/ShilongLiu/Grounding_DINO_demo)
|
| 40 |
+
[](https://youtu.be/oEQYStnF2l8)
|
| 41 |
+
[](https://youtu.be/C4NqaRBz_Kw) -->
|
| 42 |
+
|
| 43 |
+
## :sparkles: Highlight Projects
|
| 44 |
+
|
| 45 |
+
- [Semantic-SAM: a universal image segmentation model to enable segment and recognize anything at any desired granularity.](https://github.com/UX-Decoder/Semantic-SAM),
|
| 46 |
+
- [DetGPT: Detect What You Need via Reasoning](https://github.com/OptimalScale/DetGPT)
|
| 47 |
+
- [Grounded-SAM: Marrying Grounding DINO with Segment Anything](https://github.com/IDEA-Research/Grounded-Segment-Anything)
|
| 48 |
+
- [Grounding DINO with Stable Diffusion](demo/image_editing_with_groundingdino_stablediffusion.ipynb)
|
| 49 |
+
- [Grounding DINO with GLIGEN for Controllable Image Editing](demo/image_editing_with_groundingdino_gligen.ipynb)
|
| 50 |
+
- [OpenSeeD: A Simple and Strong Openset Segmentation Model](https://github.com/IDEA-Research/OpenSeeD)
|
| 51 |
+
- [SEEM: Segment Everything Everywhere All at Once](https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once)
|
| 52 |
+
- [X-GPT: Conversational Visual Agent supported by X-Decoder](https://github.com/microsoft/X-Decoder/tree/xgpt)
|
| 53 |
+
- [GLIGEN: Open-Set Grounded Text-to-Image Generation](https://github.com/gligen/GLIGEN)
|
| 54 |
+
- [LLaVA: Large Language and Vision Assistant](https://github.com/haotian-liu/LLaVA)
|
| 55 |
|
| 56 |
+
<!-- Extensions | [Grounding DINO with Segment Anything](https://github.com/IDEA-Research/Grounded-Segment-Anything); [Grounding DINO with Stable Diffusion](demo/image_editing_with_groundingdino_stablediffusion.ipynb); [Grounding DINO with GLIGEN](demo/image_editing_with_groundingdino_gligen.ipynb) -->
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
|
| 59 |
|
| 60 |
+
<!-- Official PyTorch implementation of [Grounding DINO](https://arxiv.org/abs/2303.05499), a stronger open-set object detector. Code is available now! -->
|
| 61 |
|
| 62 |
|
| 63 |
+
## :bulb: Highlight
|
| 64 |
|
| 65 |
- **Open-Set Detection.** Detect **everything** with language!
|
| 66 |
+
- **High Performance.** COCO zero-shot **52.5 AP** (training without COCO data!). COCO fine-tune **63.0 AP**.
|
| 67 |
- **Flexible.** Collaboration with Stable Diffusion for Image Editting.
|
| 68 |
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
## :fire: News
|
| 73 |
+
- **`2023/07/18`**: We release [Semantic-SAM](https://github.com/UX-Decoder/Semantic-SAM), a universal image segmentation model to enable segment and recognize anything at any desired granularity. **Code** and **checkpoint** are available!
|
| 74 |
+
- **`2023/06/17`**: We provide an example to evaluate Grounding DINO on COCO zero-shot performance.
|
| 75 |
+
- **`2023/04/15`**: Refer to [CV in the Wild Readings](https://github.com/Computer-Vision-in-the-Wild/CVinW_Readings) for those who are interested in open-set recognition!
|
| 76 |
+
- **`2023/04/08`**: We release [demos](demo/image_editing_with_groundingdino_gligen.ipynb) to combine [Grounding DINO](https://arxiv.org/abs/2303.05499) with [GLIGEN](https://github.com/gligen/GLIGEN) for more controllable image editings.
|
| 77 |
+
- **`2023/04/08`**: We release [demos](demo/image_editing_with_groundingdino_stablediffusion.ipynb) to combine [Grounding DINO](https://arxiv.org/abs/2303.05499) with [Stable Diffusion](https://github.com/Stability-AI/StableDiffusion) for image editings.
|
| 78 |
+
- **`2023/04/06`**: We build a new demo by marrying GroundingDINO with [Segment-Anything](https://github.com/facebookresearch/segment-anything) named **[Grounded-Segment-Anything](https://github.com/IDEA-Research/Grounded-Segment-Anything)** aims to support segmentation in GroundingDINO.
|
| 79 |
+
- **`2023/03/28`**: A YouTube [video](https://youtu.be/cMa77r3YrDk) about Grounding DINO and basic object detection prompt engineering. [[SkalskiP](https://github.com/SkalskiP)]
|
| 80 |
+
- **`2023/03/28`**: Add a [demo](https://huggingface.co/spaces/ShilongLiu/Grounding_DINO_demo) on Hugging Face Space!
|
| 81 |
+
- **`2023/03/27`**: Support CPU-only mode. Now the model can run on machines without GPUs.
|
| 82 |
+
- **`2023/03/25`**: A [demo](https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/zero-shot-object-detection-with-grounding-dino.ipynb) for Grounding DINO is available at Colab. [[SkalskiP](https://github.com/SkalskiP)]
|
| 83 |
+
- **`2023/03/22`**: Code is available Now!
|
| 84 |
|
| 85 |
<details open>
|
| 86 |
<summary><font size="4">
|
| 87 |
Description
|
| 88 |
</font></summary>
|
| 89 |
+
<a href="https://arxiv.org/abs/2303.05499">Paper</a> introduction.
|
| 90 |
<img src=".asset/hero_figure.png" alt="ODinW" width="100%">
|
| 91 |
+
Marrying <a href="https://github.com/IDEA-Research/GroundingDINO">Grounding DINO</a> and <a href="https://github.com/gligen/GLIGEN">GLIGEN</a>
|
| 92 |
+
<img src="https://huggingface.co/ShilongLiu/GroundingDINO/resolve/main/GD_GLIGEN.png" alt="gd_gligen" width="100%">
|
| 93 |
</details>
|
| 94 |
|
| 95 |
+
## :star: Explanations/Tips for Grounding DINO Inputs and Outputs
|
| 96 |
+
- Grounding DINO accepts an `(image, text)` pair as inputs.
|
| 97 |
+
- It outputs `900` (by default) object boxes. Each box has similarity scores across all input words. (as shown in Figures below.)
|
| 98 |
+
- We defaultly choose the boxes whose highest similarities are higher than a `box_threshold`.
|
| 99 |
+
- We extract the words whose similarities are higher than the `text_threshold` as predicted labels.
|
| 100 |
+
- If you want to obtain objects of specific phrases, like the `dogs` in the sentence `two dogs with a stick.`, you can select the boxes with highest text similarities with `dogs` as final outputs.
|
| 101 |
+
- Note that each word can be split to **more than one** tokens with different tokenlizers. The number of words in a sentence may not equal to the number of text tokens.
|
| 102 |
+
- We suggest separating different category names with `.` for Grounding DINO.
|
| 103 |
+

|
| 104 |
+

|
| 105 |
|
| 106 |
+
## :label: TODO
|
|
|
|
| 107 |
|
| 108 |
- [x] Release inference code and demo.
|
| 109 |
- [x] Release checkpoints.
|
| 110 |
+
- [x] Grounding DINO with Stable Diffusion and GLIGEN demos.
|
| 111 |
- [ ] Release training codes.
|
| 112 |
|
| 113 |
+
## :hammer_and_wrench: Install
|
| 114 |
+
|
| 115 |
+
**Note:**
|
| 116 |
+
|
| 117 |
+
0. If you have a CUDA environment, please make sure the environment variable `CUDA_HOME` is set. It will be compiled under CPU-only mode if no CUDA available.
|
| 118 |
+
|
| 119 |
+
Please make sure following the installation steps strictly, otherwise the program may produce:
|
| 120 |
+
```bash
|
| 121 |
+
NameError: name '_C' is not defined
|
| 122 |
+
```
|
| 123 |
+
|
| 124 |
+
If this happened, please reinstalled the groundingDINO by reclone the git and do all the installation steps again.
|
| 125 |
+
|
| 126 |
+
#### how to check cuda:
|
| 127 |
+
```bash
|
| 128 |
+
echo $CUDA_HOME
|
| 129 |
+
```
|
| 130 |
+
If it print nothing, then it means you haven't set up the path/
|
| 131 |
+
|
| 132 |
+
Run this so the environment variable will be set under current shell.
|
| 133 |
+
```bash
|
| 134 |
+
export CUDA_HOME=/path/to/cuda-11.3
|
| 135 |
+
```
|
| 136 |
+
|
| 137 |
+
Notice the version of cuda should be aligned with your CUDA runtime, for there might exists multiple cuda at the same time.
|
| 138 |
+
|
| 139 |
+
If you want to set the CUDA_HOME permanently, store it using:
|
| 140 |
+
|
| 141 |
+
```bash
|
| 142 |
+
echo 'export CUDA_HOME=/path/to/cuda' >> ~/.bashrc
|
| 143 |
+
```
|
| 144 |
+
after that, source the bashrc file and check CUDA_HOME:
|
| 145 |
+
```bash
|
| 146 |
+
source ~/.bashrc
|
| 147 |
+
echo $CUDA_HOME
|
| 148 |
+
```
|
| 149 |
+
|
| 150 |
+
In this example, /path/to/cuda-11.3 should be replaced with the path where your CUDA toolkit is installed. You can find this by typing **which nvcc** in your terminal:
|
| 151 |
+
|
| 152 |
+
For instance,
|
| 153 |
+
if the output is /usr/local/cuda/bin/nvcc, then:
|
| 154 |
+
```bash
|
| 155 |
+
export CUDA_HOME=/usr/local/cuda
|
| 156 |
+
```
|
| 157 |
+
**Installation:**
|
| 158 |
+
|
| 159 |
+
1.Clone the GroundingDINO repository from GitHub.
|
| 160 |
+
|
| 161 |
+
```bash
|
| 162 |
+
git clone https://github.com/IDEA-Research/GroundingDINO.git
|
| 163 |
+
```
|
| 164 |
+
|
| 165 |
+
2. Change the current directory to the GroundingDINO folder.
|
| 166 |
+
|
| 167 |
+
```bash
|
| 168 |
+
cd GroundingDINO/
|
| 169 |
+
```
|
| 170 |
|
| 171 |
+
3. Install the required dependencies in the current directory.
|
| 172 |
|
| 173 |
```bash
|
| 174 |
pip install -e .
|
| 175 |
```
|
| 176 |
|
| 177 |
+
4. Download pre-trained model weights.
|
| 178 |
+
|
| 179 |
+
```bash
|
| 180 |
+
mkdir weights
|
| 181 |
+
cd weights
|
| 182 |
+
wget -q https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha/groundingdino_swint_ogc.pth
|
| 183 |
+
cd ..
|
| 184 |
+
```
|
| 185 |
+
|
| 186 |
+
## :arrow_forward: Demo
|
| 187 |
+
Check your GPU ID (only if you're using a GPU)
|
| 188 |
+
|
| 189 |
+
```bash
|
| 190 |
+
nvidia-smi
|
| 191 |
+
```
|
| 192 |
+
Replace `{GPU ID}`, `image_you_want_to_detect.jpg`, and `"dir you want to save the output"` with appropriate values in the following command
|
| 193 |
+
```bash
|
| 194 |
+
CUDA_VISIBLE_DEVICES={GPU ID} python demo/inference_on_a_image.py \
|
| 195 |
+
-c groundingdino/config/GroundingDINO_SwinT_OGC.py \
|
| 196 |
+
-p weights/groundingdino_swint_ogc.pth \
|
| 197 |
+
-i image_you_want_to_detect.jpg \
|
| 198 |
+
-o "dir you want to save the output" \
|
| 199 |
+
-t "chair"
|
| 200 |
+
[--cpu-only] # open it for cpu mode
|
| 201 |
+
```
|
| 202 |
|
| 203 |
+
If you would like to specify the phrases to detect, here is a demo:
|
| 204 |
```bash
|
| 205 |
+
CUDA_VISIBLE_DEVICES={GPU ID} python demo/inference_on_a_image.py \
|
| 206 |
+
-c groundingdino/config/GroundingDINO_SwinT_OGC.py \
|
| 207 |
+
-p ./groundingdino_swint_ogc.pth \
|
| 208 |
+
-i .asset/cat_dog.jpeg \
|
| 209 |
+
-o logs/1111 \
|
| 210 |
+
-t "There is a cat and a dog in the image ." \
|
| 211 |
+
--token_spans "[[[9, 10], [11, 14]], [[19, 20], [21, 24]]]"
|
| 212 |
+
[--cpu-only] # open it for cpu mode
|
| 213 |
```
|
| 214 |
+
The token_spans specify the start and end positions of a phrases. For example, the first phrase is `[[9, 10], [11, 14]]`. `"There is a cat and a dog in the image ."[9:10] = 'a'`, `"There is a cat and a dog in the image ."[11:14] = 'cat'`. Hence it refers to the phrase `a cat` . Similarly, the `[[19, 20], [21, 24]]` refers to the phrase `a dog`.
|
| 215 |
+
|
| 216 |
See the `demo/inference_on_a_image.py` for more details.
|
| 217 |
|
| 218 |
+
**Running with Python:**
|
| 219 |
+
|
| 220 |
+
```python
|
| 221 |
+
from groundingdino.util.inference import load_model, load_image, predict, annotate
|
| 222 |
+
import cv2
|
| 223 |
+
|
| 224 |
+
model = load_model("groundingdino/config/GroundingDINO_SwinT_OGC.py", "weights/groundingdino_swint_ogc.pth")
|
| 225 |
+
IMAGE_PATH = "weights/dog-3.jpeg"
|
| 226 |
+
TEXT_PROMPT = "chair . person . dog ."
|
| 227 |
+
BOX_TRESHOLD = 0.35
|
| 228 |
+
TEXT_TRESHOLD = 0.25
|
| 229 |
+
|
| 230 |
+
image_source, image = load_image(IMAGE_PATH)
|
| 231 |
+
|
| 232 |
+
boxes, logits, phrases = predict(
|
| 233 |
+
model=model,
|
| 234 |
+
image=image,
|
| 235 |
+
caption=TEXT_PROMPT,
|
| 236 |
+
box_threshold=BOX_TRESHOLD,
|
| 237 |
+
text_threshold=TEXT_TRESHOLD
|
| 238 |
+
)
|
| 239 |
+
|
| 240 |
+
annotated_frame = annotate(image_source=image_source, boxes=boxes, logits=logits, phrases=phrases)
|
| 241 |
+
cv2.imwrite("annotated_image.jpg", annotated_frame)
|
| 242 |
+
```
|
| 243 |
**Web UI**
|
| 244 |
|
| 245 |
We also provide a demo code to integrate Grounding DINO with Gradio Web UI. See the file `demo/gradio_app.py` for more details.
|
| 246 |
|
| 247 |
+
**Notebooks**
|
| 248 |
+
|
| 249 |
+
- We release [demos](demo/image_editing_with_groundingdino_gligen.ipynb) to combine [Grounding DINO](https://arxiv.org/abs/2303.05499) with [GLIGEN](https://github.com/gligen/GLIGEN) for more controllable image editings.
|
| 250 |
+
- We release [demos](demo/image_editing_with_groundingdino_stablediffusion.ipynb) to combine [Grounding DINO](https://arxiv.org/abs/2303.05499) with [Stable Diffusion](https://github.com/Stability-AI/StableDiffusion) for image editings.
|
| 251 |
+
|
| 252 |
+
## COCO Zero-shot Evaluations
|
| 253 |
+
|
| 254 |
+
We provide an example to evaluate Grounding DINO zero-shot performance on COCO. The results should be **48.5**.
|
| 255 |
+
|
| 256 |
+
```bash
|
| 257 |
+
CUDA_VISIBLE_DEVICES=0 \
|
| 258 |
+
python demo/test_ap_on_coco.py \
|
| 259 |
+
-c groundingdino/config/GroundingDINO_SwinT_OGC.py \
|
| 260 |
+
-p weights/groundingdino_swint_ogc.pth \
|
| 261 |
+
--anno_path /path/to/annoataions/ie/instances_val2017.json \
|
| 262 |
+
--image_dir /path/to/imagedir/ie/val2017
|
| 263 |
+
```
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
## :luggage: Checkpoints
|
| 267 |
|
| 268 |
<!-- insert a table -->
|
| 269 |
<table>
|
|
|
|
| 285 |
<td>Swin-T</td>
|
| 286 |
<td>O365,GoldG,Cap4M</td>
|
| 287 |
<td>48.4 (zero-shot) / 57.2 (fine-tune)</td>
|
| 288 |
+
<td><a href="https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha/groundingdino_swint_ogc.pth">GitHub link</a> | <a href="https://huggingface.co/ShilongLiu/GroundingDINO/resolve/main/groundingdino_swint_ogc.pth">HF link</a></td>
|
| 289 |
<td><a href="https://github.com/IDEA-Research/GroundingDINO/blob/main/groundingdino/config/GroundingDINO_SwinT_OGC.py">link</a></td>
|
| 290 |
</tr>
|
| 291 |
+
<tr>
|
| 292 |
+
<th>2</th>
|
| 293 |
+
<td>GroundingDINO-B</td>
|
| 294 |
+
<td>Swin-B</td>
|
| 295 |
+
<td>COCO,O365,GoldG,Cap4M,OpenImage,ODinW-35,RefCOCO</td>
|
| 296 |
+
<td>56.7 </td>
|
| 297 |
+
<td><a href="https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha2/groundingdino_swinb_cogcoor.pth">GitHub link</a> | <a href="https://huggingface.co/ShilongLiu/GroundingDINO/resolve/main/groundingdino_swinb_cogcoor.pth">HF link</a>
|
| 298 |
+
<td><a href="https://github.com/IDEA-Research/GroundingDINO/blob/main/groundingdino/config/GroundingDINO_SwinB_cfg.py">link</a></td>
|
| 299 |
+
</tr>
|
| 300 |
</tbody>
|
| 301 |
</table>
|
| 302 |
|
| 303 |
+
## :medal_military: Results
|
| 304 |
|
| 305 |
<details open>
|
| 306 |
<summary><font size="4">
|
|
|
|
| 320 |
<summary><font size="4">
|
| 321 |
Marrying Grounding DINO with <a href="https://github.com/Stability-AI/StableDiffusion">Stable Diffusion</a> for Image Editing
|
| 322 |
</font></summary>
|
| 323 |
+
See our example <a href="https://github.com/IDEA-Research/GroundingDINO/blob/main/demo/image_editing_with_groundingdino_stablediffusion.ipynb">notebook</a> for more details.
|
| 324 |
<img src=".asset/GD_SD.png" alt="GD_SD" width="100%">
|
| 325 |
</details>
|
| 326 |
|
| 327 |
+
|
| 328 |
<details open>
|
| 329 |
<summary><font size="4">
|
| 330 |
+
Marrying Grounding DINO with <a href="https://github.com/gligen/GLIGEN">GLIGEN</a> for more Detailed Image Editing.
|
| 331 |
</font></summary>
|
| 332 |
+
See our example <a href="https://github.com/IDEA-Research/GroundingDINO/blob/main/demo/image_editing_with_groundingdino_gligen.ipynb">notebook</a> for more details.
|
| 333 |
<img src=".asset/GD_GLIGEN.png" alt="GD_GLIGEN" width="100%">
|
| 334 |
</details>
|
| 335 |
|
| 336 |
+
## :sauropod: Model: Grounding DINO
|
| 337 |
|
| 338 |
Includes: a text backbone, an image backbone, a feature enhancer, a language-guided query selection, and a cross-modality decoder.
|
| 339 |
|
| 340 |

|
| 341 |
|
| 342 |
|
| 343 |
+
## :hearts: Acknowledgement
|
| 344 |
|
| 345 |
Our model is related to [DINO](https://github.com/IDEA-Research/DINO) and [GLIP](https://github.com/microsoft/GLIP). Thanks for their great work!
|
| 346 |
|
|
|
|
| 349 |
Thanks [Stable Diffusion](https://github.com/Stability-AI/StableDiffusion) and [GLIGEN](https://github.com/gligen/GLIGEN) for their awesome models.
|
| 350 |
|
| 351 |
|
| 352 |
+
## :black_nib: Citation
|
| 353 |
|
| 354 |
If you find our work helpful for your research, please consider citing the following BibTeX entry.
|
| 355 |
|
| 356 |
```bibtex
|
| 357 |
+
@article{liu2023grounding,
|
| 358 |
+
title={Grounding dino: Marrying dino with grounded pre-training for open-set object detection},
|
| 359 |
+
author={Liu, Shilong and Zeng, Zhaoyang and Ren, Tianhe and Li, Feng and Zhang, Hao and Yang, Jie and Li, Chunyuan and Yang, Jianwei and Su, Hang and Zhu, Jun and others},
|
| 360 |
+
journal={arXiv preprint arXiv:2303.05499},
|
| 361 |
year={2023}
|
| 362 |
}
|
| 363 |
```
|
GroundingDINO/groundingdino/config/{GroundingDINO_SwinB.cfg.py → GroundingDINO_SwinB_cfg.py}
RENAMED
|
File without changes
|
GroundingDINO/groundingdino/config/__init__.py
ADDED
|
File without changes
|
GroundingDINO/groundingdino/datasets/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (189 Bytes). View file
|
|
|
GroundingDINO/groundingdino/datasets/__pycache__/transforms.cpython-310.pyc
ADDED
|
Binary file (10.1 kB). View file
|
|
|
GroundingDINO/groundingdino/datasets/cocogrounding_eval.py
ADDED
|
@@ -0,0 +1,269 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ------------------------------------------------------------------------
|
| 2 |
+
# Grounding DINO. Midified by Shilong Liu.
|
| 3 |
+
# url: https://github.com/IDEA-Research/GroundingDINO
|
| 4 |
+
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
| 5 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
| 6 |
+
# ------------------------------------------------------------------------
|
| 7 |
+
# Copyright (c) Aishwarya Kamath & Nicolas Carion. Licensed under the Apache License 2.0. All Rights Reserved
|
| 8 |
+
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
| 9 |
+
"""
|
| 10 |
+
COCO evaluator that works in distributed mode.
|
| 11 |
+
|
| 12 |
+
Mostly copy-paste from https://github.com/pytorch/vision/blob/edfd5a7/references/detection/coco_eval.py
|
| 13 |
+
The difference is that there is less copy-pasting from pycocotools
|
| 14 |
+
in the end of the file, as python3 can suppress prints with contextlib
|
| 15 |
+
"""
|
| 16 |
+
import contextlib
|
| 17 |
+
import copy
|
| 18 |
+
import os
|
| 19 |
+
|
| 20 |
+
import numpy as np
|
| 21 |
+
import pycocotools.mask as mask_util
|
| 22 |
+
import torch
|
| 23 |
+
from pycocotools.coco import COCO
|
| 24 |
+
from pycocotools.cocoeval import COCOeval
|
| 25 |
+
|
| 26 |
+
from groundingdino.util.misc import all_gather
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class CocoGroundingEvaluator(object):
|
| 30 |
+
def __init__(self, coco_gt, iou_types, useCats=True):
|
| 31 |
+
assert isinstance(iou_types, (list, tuple))
|
| 32 |
+
coco_gt = copy.deepcopy(coco_gt)
|
| 33 |
+
self.coco_gt = coco_gt
|
| 34 |
+
|
| 35 |
+
self.iou_types = iou_types
|
| 36 |
+
self.coco_eval = {}
|
| 37 |
+
for iou_type in iou_types:
|
| 38 |
+
self.coco_eval[iou_type] = COCOeval(coco_gt, iouType=iou_type)
|
| 39 |
+
self.coco_eval[iou_type].useCats = useCats
|
| 40 |
+
|
| 41 |
+
self.img_ids = []
|
| 42 |
+
self.eval_imgs = {k: [] for k in iou_types}
|
| 43 |
+
self.useCats = useCats
|
| 44 |
+
|
| 45 |
+
def update(self, predictions):
|
| 46 |
+
img_ids = list(np.unique(list(predictions.keys())))
|
| 47 |
+
self.img_ids.extend(img_ids)
|
| 48 |
+
|
| 49 |
+
for iou_type in self.iou_types:
|
| 50 |
+
results = self.prepare(predictions, iou_type)
|
| 51 |
+
|
| 52 |
+
# suppress pycocotools prints
|
| 53 |
+
with open(os.devnull, "w") as devnull:
|
| 54 |
+
with contextlib.redirect_stdout(devnull):
|
| 55 |
+
coco_dt = COCO.loadRes(self.coco_gt, results) if results else COCO()
|
| 56 |
+
|
| 57 |
+
coco_eval = self.coco_eval[iou_type]
|
| 58 |
+
|
| 59 |
+
coco_eval.cocoDt = coco_dt
|
| 60 |
+
coco_eval.params.imgIds = list(img_ids)
|
| 61 |
+
coco_eval.params.useCats = self.useCats
|
| 62 |
+
img_ids, eval_imgs = evaluate(coco_eval)
|
| 63 |
+
|
| 64 |
+
self.eval_imgs[iou_type].append(eval_imgs)
|
| 65 |
+
|
| 66 |
+
def synchronize_between_processes(self):
|
| 67 |
+
for iou_type in self.iou_types:
|
| 68 |
+
self.eval_imgs[iou_type] = np.concatenate(self.eval_imgs[iou_type], 2)
|
| 69 |
+
create_common_coco_eval(self.coco_eval[iou_type], self.img_ids, self.eval_imgs[iou_type])
|
| 70 |
+
|
| 71 |
+
def accumulate(self):
|
| 72 |
+
for coco_eval in self.coco_eval.values():
|
| 73 |
+
coco_eval.accumulate()
|
| 74 |
+
|
| 75 |
+
def summarize(self):
|
| 76 |
+
for iou_type, coco_eval in self.coco_eval.items():
|
| 77 |
+
print("IoU metric: {}".format(iou_type))
|
| 78 |
+
coco_eval.summarize()
|
| 79 |
+
|
| 80 |
+
def prepare(self, predictions, iou_type):
|
| 81 |
+
if iou_type == "bbox":
|
| 82 |
+
return self.prepare_for_coco_detection(predictions)
|
| 83 |
+
elif iou_type == "segm":
|
| 84 |
+
return self.prepare_for_coco_segmentation(predictions)
|
| 85 |
+
elif iou_type == "keypoints":
|
| 86 |
+
return self.prepare_for_coco_keypoint(predictions)
|
| 87 |
+
else:
|
| 88 |
+
raise ValueError("Unknown iou type {}".format(iou_type))
|
| 89 |
+
|
| 90 |
+
def prepare_for_coco_detection(self, predictions):
|
| 91 |
+
coco_results = []
|
| 92 |
+
for original_id, prediction in predictions.items():
|
| 93 |
+
if len(prediction) == 0:
|
| 94 |
+
continue
|
| 95 |
+
|
| 96 |
+
boxes = prediction["boxes"]
|
| 97 |
+
boxes = convert_to_xywh(boxes).tolist()
|
| 98 |
+
scores = prediction["scores"].tolist()
|
| 99 |
+
labels = prediction["labels"].tolist()
|
| 100 |
+
|
| 101 |
+
coco_results.extend(
|
| 102 |
+
[
|
| 103 |
+
{
|
| 104 |
+
"image_id": original_id,
|
| 105 |
+
"category_id": labels[k],
|
| 106 |
+
"bbox": box,
|
| 107 |
+
"score": scores[k],
|
| 108 |
+
}
|
| 109 |
+
for k, box in enumerate(boxes)
|
| 110 |
+
]
|
| 111 |
+
)
|
| 112 |
+
return coco_results
|
| 113 |
+
|
| 114 |
+
def prepare_for_coco_segmentation(self, predictions):
|
| 115 |
+
coco_results = []
|
| 116 |
+
for original_id, prediction in predictions.items():
|
| 117 |
+
if len(prediction) == 0:
|
| 118 |
+
continue
|
| 119 |
+
|
| 120 |
+
scores = prediction["scores"]
|
| 121 |
+
labels = prediction["labels"]
|
| 122 |
+
masks = prediction["masks"]
|
| 123 |
+
|
| 124 |
+
masks = masks > 0.5
|
| 125 |
+
|
| 126 |
+
scores = prediction["scores"].tolist()
|
| 127 |
+
labels = prediction["labels"].tolist()
|
| 128 |
+
|
| 129 |
+
rles = [
|
| 130 |
+
mask_util.encode(np.array(mask[0, :, :, np.newaxis], dtype=np.uint8, order="F"))[0]
|
| 131 |
+
for mask in masks
|
| 132 |
+
]
|
| 133 |
+
for rle in rles:
|
| 134 |
+
rle["counts"] = rle["counts"].decode("utf-8")
|
| 135 |
+
|
| 136 |
+
coco_results.extend(
|
| 137 |
+
[
|
| 138 |
+
{
|
| 139 |
+
"image_id": original_id,
|
| 140 |
+
"category_id": labels[k],
|
| 141 |
+
"segmentation": rle,
|
| 142 |
+
"score": scores[k],
|
| 143 |
+
}
|
| 144 |
+
for k, rle in enumerate(rles)
|
| 145 |
+
]
|
| 146 |
+
)
|
| 147 |
+
return coco_results
|
| 148 |
+
|
| 149 |
+
def prepare_for_coco_keypoint(self, predictions):
|
| 150 |
+
coco_results = []
|
| 151 |
+
for original_id, prediction in predictions.items():
|
| 152 |
+
if len(prediction) == 0:
|
| 153 |
+
continue
|
| 154 |
+
|
| 155 |
+
boxes = prediction["boxes"]
|
| 156 |
+
boxes = convert_to_xywh(boxes).tolist()
|
| 157 |
+
scores = prediction["scores"].tolist()
|
| 158 |
+
labels = prediction["labels"].tolist()
|
| 159 |
+
keypoints = prediction["keypoints"]
|
| 160 |
+
keypoints = keypoints.flatten(start_dim=1).tolist()
|
| 161 |
+
|
| 162 |
+
coco_results.extend(
|
| 163 |
+
[
|
| 164 |
+
{
|
| 165 |
+
"image_id": original_id,
|
| 166 |
+
"category_id": labels[k],
|
| 167 |
+
"keypoints": keypoint,
|
| 168 |
+
"score": scores[k],
|
| 169 |
+
}
|
| 170 |
+
for k, keypoint in enumerate(keypoints)
|
| 171 |
+
]
|
| 172 |
+
)
|
| 173 |
+
return coco_results
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
def convert_to_xywh(boxes):
|
| 177 |
+
xmin, ymin, xmax, ymax = boxes.unbind(1)
|
| 178 |
+
return torch.stack((xmin, ymin, xmax - xmin, ymax - ymin), dim=1)
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
def merge(img_ids, eval_imgs):
|
| 182 |
+
all_img_ids = all_gather(img_ids)
|
| 183 |
+
all_eval_imgs = all_gather(eval_imgs)
|
| 184 |
+
|
| 185 |
+
merged_img_ids = []
|
| 186 |
+
for p in all_img_ids:
|
| 187 |
+
merged_img_ids.extend(p)
|
| 188 |
+
|
| 189 |
+
merged_eval_imgs = []
|
| 190 |
+
for p in all_eval_imgs:
|
| 191 |
+
merged_eval_imgs.append(p)
|
| 192 |
+
|
| 193 |
+
merged_img_ids = np.array(merged_img_ids)
|
| 194 |
+
merged_eval_imgs = np.concatenate(merged_eval_imgs, 2)
|
| 195 |
+
|
| 196 |
+
# keep only unique (and in sorted order) images
|
| 197 |
+
merged_img_ids, idx = np.unique(merged_img_ids, return_index=True)
|
| 198 |
+
merged_eval_imgs = merged_eval_imgs[..., idx]
|
| 199 |
+
|
| 200 |
+
return merged_img_ids, merged_eval_imgs
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
def create_common_coco_eval(coco_eval, img_ids, eval_imgs):
|
| 204 |
+
img_ids, eval_imgs = merge(img_ids, eval_imgs)
|
| 205 |
+
img_ids = list(img_ids)
|
| 206 |
+
eval_imgs = list(eval_imgs.flatten())
|
| 207 |
+
|
| 208 |
+
coco_eval.evalImgs = eval_imgs
|
| 209 |
+
coco_eval.params.imgIds = img_ids
|
| 210 |
+
coco_eval._paramsEval = copy.deepcopy(coco_eval.params)
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
#################################################################
|
| 214 |
+
# From pycocotools, just removed the prints and fixed
|
| 215 |
+
# a Python3 bug about unicode not defined
|
| 216 |
+
#################################################################
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
def evaluate(self):
|
| 220 |
+
"""
|
| 221 |
+
Run per image evaluation on given images and store results (a list of dict) in self.evalImgs
|
| 222 |
+
:return: None
|
| 223 |
+
"""
|
| 224 |
+
# tic = time.time()
|
| 225 |
+
# print('Running per image evaluation...')
|
| 226 |
+
p = self.params
|
| 227 |
+
# add backward compatibility if useSegm is specified in params
|
| 228 |
+
if p.useSegm is not None:
|
| 229 |
+
p.iouType = "segm" if p.useSegm == 1 else "bbox"
|
| 230 |
+
print("useSegm (deprecated) is not None. Running {} evaluation".format(p.iouType))
|
| 231 |
+
# print('Evaluate annotation type *{}*'.format(p.iouType))
|
| 232 |
+
p.imgIds = list(np.unique(p.imgIds))
|
| 233 |
+
if p.useCats:
|
| 234 |
+
p.catIds = list(np.unique(p.catIds))
|
| 235 |
+
p.maxDets = sorted(p.maxDets)
|
| 236 |
+
self.params = p
|
| 237 |
+
|
| 238 |
+
self._prepare()
|
| 239 |
+
# loop through images, area range, max detection number
|
| 240 |
+
catIds = p.catIds if p.useCats else [-1]
|
| 241 |
+
|
| 242 |
+
if p.iouType == "segm" or p.iouType == "bbox":
|
| 243 |
+
computeIoU = self.computeIoU
|
| 244 |
+
elif p.iouType == "keypoints":
|
| 245 |
+
computeIoU = self.computeOks
|
| 246 |
+
self.ious = {
|
| 247 |
+
(imgId, catId): computeIoU(imgId, catId)
|
| 248 |
+
for imgId in p.imgIds
|
| 249 |
+
for catId in catIds}
|
| 250 |
+
|
| 251 |
+
evaluateImg = self.evaluateImg
|
| 252 |
+
maxDet = p.maxDets[-1]
|
| 253 |
+
evalImgs = [
|
| 254 |
+
evaluateImg(imgId, catId, areaRng, maxDet)
|
| 255 |
+
for catId in catIds
|
| 256 |
+
for areaRng in p.areaRng
|
| 257 |
+
for imgId in p.imgIds
|
| 258 |
+
]
|
| 259 |
+
# this is NOT in the pycocotools code, but could be done outside
|
| 260 |
+
evalImgs = np.asarray(evalImgs).reshape(len(catIds), len(p.areaRng), len(p.imgIds))
|
| 261 |
+
self._paramsEval = copy.deepcopy(self.params)
|
| 262 |
+
# toc = time.time()
|
| 263 |
+
# print('DONE (t={:0.2f}s).'.format(toc-tic))
|
| 264 |
+
return p.imgIds, evalImgs
|
| 265 |
+
|
| 266 |
+
|
| 267 |
+
#################################################################
|
| 268 |
+
# end of straight copy from pycocotools, just removing the prints
|
| 269 |
+
#################################################################
|
GroundingDINO/groundingdino/models/GroundingDINO/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (258 Bytes). View file
|
|
|
GroundingDINO/groundingdino/models/GroundingDINO/__pycache__/bertwarper.cpython-310.pyc
ADDED
|
Binary file (7.23 kB). View file
|
|
|
GroundingDINO/groundingdino/models/GroundingDINO/__pycache__/fuse_modules.cpython-310.pyc
ADDED
|
Binary file (7.78 kB). View file
|
|
|
GroundingDINO/groundingdino/models/GroundingDINO/__pycache__/groundingdino.cpython-310.pyc
ADDED
|
Binary file (11.3 kB). View file
|
|
|
GroundingDINO/groundingdino/models/GroundingDINO/__pycache__/ms_deform_attn.cpython-310.pyc
ADDED
|
Binary file (11.8 kB). View file
|
|
|
GroundingDINO/groundingdino/models/GroundingDINO/__pycache__/transformer.cpython-310.pyc
ADDED
|
Binary file (19.3 kB). View file
|
|
|
GroundingDINO/groundingdino/models/GroundingDINO/__pycache__/transformer_vanilla.cpython-310.pyc
ADDED
|
Binary file (3.45 kB). View file
|
|
|
GroundingDINO/groundingdino/models/GroundingDINO/__pycache__/utils.cpython-310.pyc
ADDED
|
Binary file (9.58 kB). View file
|
|
|
GroundingDINO/groundingdino/models/GroundingDINO/backbone/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (257 Bytes). View file
|
|
|
GroundingDINO/groundingdino/models/GroundingDINO/backbone/__pycache__/backbone.cpython-310.pyc
ADDED
|
Binary file (6.25 kB). View file
|
|
|
GroundingDINO/groundingdino/models/GroundingDINO/backbone/__pycache__/position_encoding.cpython-310.pyc
ADDED
|
Binary file (5.16 kB). View file
|
|
|
GroundingDINO/groundingdino/models/GroundingDINO/backbone/__pycache__/swin_transformer.cpython-310.pyc
ADDED
|
Binary file (20.6 kB). View file
|
|
|
GroundingDINO/groundingdino/models/GroundingDINO/groundingdino.py
CHANGED
|
@@ -206,6 +206,21 @@ class GroundingDINO(nn.Module):
|
|
| 206 |
nn.init.xavier_uniform_(proj[0].weight, gain=1)
|
| 207 |
nn.init.constant_(proj[0].bias, 0)
|
| 208 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
def init_ref_points(self, use_num_queries):
|
| 210 |
self.refpoint_embed = nn.Embedding(use_num_queries, self.query_dim)
|
| 211 |
|
|
@@ -228,7 +243,6 @@ class GroundingDINO(nn.Module):
|
|
| 228 |
captions = kw["captions"]
|
| 229 |
else:
|
| 230 |
captions = [t["caption"] for t in targets]
|
| 231 |
-
len(captions)
|
| 232 |
|
| 233 |
# encoder texts
|
| 234 |
tokenized = self.tokenizer(captions, padding="longest", return_tensors="pt").to(
|
|
@@ -283,14 +297,14 @@ class GroundingDINO(nn.Module):
|
|
| 283 |
}
|
| 284 |
|
| 285 |
# import ipdb; ipdb.set_trace()
|
| 286 |
-
|
| 287 |
if isinstance(samples, (list, torch.Tensor)):
|
| 288 |
samples = nested_tensor_from_tensor_list(samples)
|
| 289 |
-
|
|
|
|
| 290 |
|
| 291 |
srcs = []
|
| 292 |
masks = []
|
| 293 |
-
for l, feat in enumerate(features):
|
| 294 |
src, mask = feat.decompose()
|
| 295 |
srcs.append(self.input_proj[l](src))
|
| 296 |
masks.append(mask)
|
|
@@ -299,7 +313,7 @@ class GroundingDINO(nn.Module):
|
|
| 299 |
_len_srcs = len(srcs)
|
| 300 |
for l in range(_len_srcs, self.num_feature_levels):
|
| 301 |
if l == _len_srcs:
|
| 302 |
-
src = self.input_proj[l](features[-1].tensors)
|
| 303 |
else:
|
| 304 |
src = self.input_proj[l](srcs[-1])
|
| 305 |
m = samples.mask
|
|
@@ -307,11 +321,11 @@ class GroundingDINO(nn.Module):
|
|
| 307 |
pos_l = self.backbone[1](NestedTensor(src, mask)).to(src.dtype)
|
| 308 |
srcs.append(src)
|
| 309 |
masks.append(mask)
|
| 310 |
-
poss.append(pos_l)
|
| 311 |
|
| 312 |
input_query_bbox = input_query_label = attn_mask = dn_meta = None
|
| 313 |
hs, reference, hs_enc, ref_enc, init_box_proposal = self.transformer(
|
| 314 |
-
srcs, masks, input_query_bbox, poss, input_query_label, attn_mask, text_dict
|
| 315 |
)
|
| 316 |
|
| 317 |
# deformable-detr-like anchor update
|
|
@@ -345,7 +359,9 @@ class GroundingDINO(nn.Module):
|
|
| 345 |
# interm_class = self.transformer.enc_out_class_embed(hs_enc[-1], text_dict)
|
| 346 |
# out['interm_outputs'] = {'pred_logits': interm_class, 'pred_boxes': interm_coord}
|
| 347 |
# out['interm_outputs_for_matching_pre'] = {'pred_logits': interm_class, 'pred_boxes': init_box_proposal}
|
| 348 |
-
|
|
|
|
|
|
|
| 349 |
return out
|
| 350 |
|
| 351 |
@torch.jit.unused
|
|
@@ -393,3 +409,4 @@ def build_groundingdino(args):
|
|
| 393 |
)
|
| 394 |
|
| 395 |
return model
|
|
|
|
|
|
| 206 |
nn.init.xavier_uniform_(proj[0].weight, gain=1)
|
| 207 |
nn.init.constant_(proj[0].bias, 0)
|
| 208 |
|
| 209 |
+
def set_image_tensor(self, samples: NestedTensor):
|
| 210 |
+
if isinstance(samples, (list, torch.Tensor)):
|
| 211 |
+
samples = nested_tensor_from_tensor_list(samples)
|
| 212 |
+
self.features, self.poss = self.backbone(samples)
|
| 213 |
+
|
| 214 |
+
def unset_image_tensor(self):
|
| 215 |
+
if hasattr(self, 'features'):
|
| 216 |
+
del self.features
|
| 217 |
+
if hasattr(self,'poss'):
|
| 218 |
+
del self.poss
|
| 219 |
+
|
| 220 |
+
def set_image_features(self, features , poss):
|
| 221 |
+
self.features = features
|
| 222 |
+
self.poss = poss
|
| 223 |
+
|
| 224 |
def init_ref_points(self, use_num_queries):
|
| 225 |
self.refpoint_embed = nn.Embedding(use_num_queries, self.query_dim)
|
| 226 |
|
|
|
|
| 243 |
captions = kw["captions"]
|
| 244 |
else:
|
| 245 |
captions = [t["caption"] for t in targets]
|
|
|
|
| 246 |
|
| 247 |
# encoder texts
|
| 248 |
tokenized = self.tokenizer(captions, padding="longest", return_tensors="pt").to(
|
|
|
|
| 297 |
}
|
| 298 |
|
| 299 |
# import ipdb; ipdb.set_trace()
|
|
|
|
| 300 |
if isinstance(samples, (list, torch.Tensor)):
|
| 301 |
samples = nested_tensor_from_tensor_list(samples)
|
| 302 |
+
if not hasattr(self, 'features') or not hasattr(self, 'poss'):
|
| 303 |
+
self.set_image_tensor(samples)
|
| 304 |
|
| 305 |
srcs = []
|
| 306 |
masks = []
|
| 307 |
+
for l, feat in enumerate(self.features):
|
| 308 |
src, mask = feat.decompose()
|
| 309 |
srcs.append(self.input_proj[l](src))
|
| 310 |
masks.append(mask)
|
|
|
|
| 313 |
_len_srcs = len(srcs)
|
| 314 |
for l in range(_len_srcs, self.num_feature_levels):
|
| 315 |
if l == _len_srcs:
|
| 316 |
+
src = self.input_proj[l](self.features[-1].tensors)
|
| 317 |
else:
|
| 318 |
src = self.input_proj[l](srcs[-1])
|
| 319 |
m = samples.mask
|
|
|
|
| 321 |
pos_l = self.backbone[1](NestedTensor(src, mask)).to(src.dtype)
|
| 322 |
srcs.append(src)
|
| 323 |
masks.append(mask)
|
| 324 |
+
self.poss.append(pos_l)
|
| 325 |
|
| 326 |
input_query_bbox = input_query_label = attn_mask = dn_meta = None
|
| 327 |
hs, reference, hs_enc, ref_enc, init_box_proposal = self.transformer(
|
| 328 |
+
srcs, masks, input_query_bbox, self.poss, input_query_label, attn_mask, text_dict
|
| 329 |
)
|
| 330 |
|
| 331 |
# deformable-detr-like anchor update
|
|
|
|
| 359 |
# interm_class = self.transformer.enc_out_class_embed(hs_enc[-1], text_dict)
|
| 360 |
# out['interm_outputs'] = {'pred_logits': interm_class, 'pred_boxes': interm_coord}
|
| 361 |
# out['interm_outputs_for_matching_pre'] = {'pred_logits': interm_class, 'pred_boxes': init_box_proposal}
|
| 362 |
+
unset_image_tensor = kw.get('unset_image_tensor', True)
|
| 363 |
+
if unset_image_tensor:
|
| 364 |
+
self.unset_image_tensor() ## If necessary
|
| 365 |
return out
|
| 366 |
|
| 367 |
@torch.jit.unused
|
|
|
|
| 409 |
)
|
| 410 |
|
| 411 |
return model
|
| 412 |
+
|
GroundingDINO/groundingdino/models/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (502 Bytes). View file
|
|
|
GroundingDINO/groundingdino/models/__pycache__/registry.cpython-310.pyc
ADDED
|
Binary file (2.11 kB). View file
|
|
|
GroundingDINO/groundingdino/util/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (187 Bytes). View file
|
|
|
GroundingDINO/groundingdino/util/__pycache__/box_ops.cpython-310.pyc
ADDED
|
Binary file (3.85 kB). View file
|
|
|
GroundingDINO/groundingdino/util/__pycache__/get_tokenlizer.cpython-310.pyc
ADDED
|
Binary file (1.13 kB). View file
|
|
|
GroundingDINO/groundingdino/util/__pycache__/inference.cpython-310.pyc
ADDED
|
Binary file (8 kB). View file
|
|
|
GroundingDINO/groundingdino/util/__pycache__/misc.cpython-310.pyc
ADDED
|
Binary file (20.3 kB). View file
|
|
|
GroundingDINO/groundingdino/util/__pycache__/slconfig.cpython-310.pyc
ADDED
|
Binary file (13.2 kB). View file
|
|
|
GroundingDINO/groundingdino/util/__pycache__/utils.cpython-310.pyc
ADDED
|
Binary file (19.9 kB). View file
|
|
|
GroundingDINO/groundingdino/util/__pycache__/visualizer.cpython-310.pyc
ADDED
|
Binary file (7.84 kB). View file
|
|
|
GroundingDINO/groundingdino/util/__pycache__/vl_utils.cpython-310.pyc
ADDED
|
Binary file (3.12 kB). View file
|
|
|
GroundingDINO/groundingdino/util/get_tokenlizer.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
from transformers import AutoTokenizer, BertModel, BertTokenizer, RobertaModel, RobertaTokenizerFast
|
| 2 |
-
|
| 3 |
|
| 4 |
def get_tokenlizer(text_encoder_type):
|
| 5 |
if not isinstance(text_encoder_type, str):
|
|
@@ -8,6 +8,8 @@ def get_tokenlizer(text_encoder_type):
|
|
| 8 |
text_encoder_type = text_encoder_type.text_encoder_type
|
| 9 |
elif text_encoder_type.get("text_encoder_type", False):
|
| 10 |
text_encoder_type = text_encoder_type.get("text_encoder_type")
|
|
|
|
|
|
|
| 11 |
else:
|
| 12 |
raise ValueError(
|
| 13 |
"Unknown type of text_encoder_type: {}".format(type(text_encoder_type))
|
|
@@ -19,8 +21,9 @@ def get_tokenlizer(text_encoder_type):
|
|
| 19 |
|
| 20 |
|
| 21 |
def get_pretrained_language_model(text_encoder_type):
|
| 22 |
-
if text_encoder_type == "bert-base-uncased":
|
| 23 |
return BertModel.from_pretrained(text_encoder_type)
|
| 24 |
if text_encoder_type == "roberta-base":
|
| 25 |
return RobertaModel.from_pretrained(text_encoder_type)
|
|
|
|
| 26 |
raise ValueError("Unknown text_encoder_type {}".format(text_encoder_type))
|
|
|
|
| 1 |
from transformers import AutoTokenizer, BertModel, BertTokenizer, RobertaModel, RobertaTokenizerFast
|
| 2 |
+
import os
|
| 3 |
|
| 4 |
def get_tokenlizer(text_encoder_type):
|
| 5 |
if not isinstance(text_encoder_type, str):
|
|
|
|
| 8 |
text_encoder_type = text_encoder_type.text_encoder_type
|
| 9 |
elif text_encoder_type.get("text_encoder_type", False):
|
| 10 |
text_encoder_type = text_encoder_type.get("text_encoder_type")
|
| 11 |
+
elif os.path.isdir(text_encoder_type) and os.path.exists(text_encoder_type):
|
| 12 |
+
pass
|
| 13 |
else:
|
| 14 |
raise ValueError(
|
| 15 |
"Unknown type of text_encoder_type: {}".format(type(text_encoder_type))
|
|
|
|
| 21 |
|
| 22 |
|
| 23 |
def get_pretrained_language_model(text_encoder_type):
|
| 24 |
+
if text_encoder_type == "bert-base-uncased" or (os.path.isdir(text_encoder_type) and os.path.exists(text_encoder_type)):
|
| 25 |
return BertModel.from_pretrained(text_encoder_type)
|
| 26 |
if text_encoder_type == "roberta-base":
|
| 27 |
return RobertaModel.from_pretrained(text_encoder_type)
|
| 28 |
+
|
| 29 |
raise ValueError("Unknown text_encoder_type {}".format(text_encoder_type))
|
GroundingDINO/groundingdino/util/inference.py
CHANGED
|
@@ -6,6 +6,7 @@ import supervision as sv
|
|
| 6 |
import torch
|
| 7 |
from PIL import Image
|
| 8 |
from torchvision.ops import box_convert
|
|
|
|
| 9 |
|
| 10 |
import groundingdino.datasets.transforms as T
|
| 11 |
from groundingdino.models import build_model
|
|
@@ -13,6 +14,10 @@ from groundingdino.util.misc import clean_state_dict
|
|
| 13 |
from groundingdino.util.slconfig import SLConfig
|
| 14 |
from groundingdino.util.utils import get_phrases_from_posmap
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
def preprocess_caption(caption: str) -> str:
|
| 18 |
result = caption.lower().strip()
|
|
@@ -51,7 +56,8 @@ def predict(
|
|
| 51 |
caption: str,
|
| 52 |
box_threshold: float,
|
| 53 |
text_threshold: float,
|
| 54 |
-
device: str = "cuda"
|
|
|
|
| 55 |
) -> Tuple[torch.Tensor, torch.Tensor, List[str]]:
|
| 56 |
caption = preprocess_caption(caption=caption)
|
| 57 |
|
|
@@ -70,17 +76,40 @@ def predict(
|
|
| 70 |
|
| 71 |
tokenizer = model.tokenizer
|
| 72 |
tokenized = tokenizer(caption)
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
return boxes, logits.max(dim=1)[0], phrases
|
| 81 |
|
| 82 |
|
| 83 |
def annotate(image_source: np.ndarray, boxes: torch.Tensor, logits: torch.Tensor, phrases: List[str]) -> np.ndarray:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
h, w, _ = image_source.shape
|
| 85 |
boxes = boxes * torch.Tensor([w, h, w, h])
|
| 86 |
xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy()
|
|
@@ -96,3 +125,147 @@ def annotate(image_source: np.ndarray, boxes: torch.Tensor, logits: torch.Tensor
|
|
| 96 |
annotated_frame = cv2.cvtColor(image_source, cv2.COLOR_RGB2BGR)
|
| 97 |
annotated_frame = box_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels)
|
| 98 |
return annotated_frame
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
import torch
|
| 7 |
from PIL import Image
|
| 8 |
from torchvision.ops import box_convert
|
| 9 |
+
import bisect
|
| 10 |
|
| 11 |
import groundingdino.datasets.transforms as T
|
| 12 |
from groundingdino.models import build_model
|
|
|
|
| 14 |
from groundingdino.util.slconfig import SLConfig
|
| 15 |
from groundingdino.util.utils import get_phrases_from_posmap
|
| 16 |
|
| 17 |
+
# ----------------------------------------------------------------------------------------------------------------------
|
| 18 |
+
# OLD API
|
| 19 |
+
# ----------------------------------------------------------------------------------------------------------------------
|
| 20 |
+
|
| 21 |
|
| 22 |
def preprocess_caption(caption: str) -> str:
|
| 23 |
result = caption.lower().strip()
|
|
|
|
| 56 |
caption: str,
|
| 57 |
box_threshold: float,
|
| 58 |
text_threshold: float,
|
| 59 |
+
device: str = "cuda",
|
| 60 |
+
remove_combined: bool = False
|
| 61 |
) -> Tuple[torch.Tensor, torch.Tensor, List[str]]:
|
| 62 |
caption = preprocess_caption(caption=caption)
|
| 63 |
|
|
|
|
| 76 |
|
| 77 |
tokenizer = model.tokenizer
|
| 78 |
tokenized = tokenizer(caption)
|
| 79 |
+
|
| 80 |
+
if remove_combined:
|
| 81 |
+
sep_idx = [i for i in range(len(tokenized['input_ids'])) if tokenized['input_ids'][i] in [101, 102, 1012]]
|
| 82 |
+
|
| 83 |
+
phrases = []
|
| 84 |
+
for logit in logits:
|
| 85 |
+
max_idx = logit.argmax()
|
| 86 |
+
insert_idx = bisect.bisect_left(sep_idx, max_idx)
|
| 87 |
+
right_idx = sep_idx[insert_idx]
|
| 88 |
+
left_idx = sep_idx[insert_idx - 1]
|
| 89 |
+
phrases.append(get_phrases_from_posmap(logit > text_threshold, tokenized, tokenizer, left_idx, right_idx).replace('.', ''))
|
| 90 |
+
else:
|
| 91 |
+
phrases = [
|
| 92 |
+
get_phrases_from_posmap(logit > text_threshold, tokenized, tokenizer).replace('.', '')
|
| 93 |
+
for logit
|
| 94 |
+
in logits
|
| 95 |
+
]
|
| 96 |
|
| 97 |
return boxes, logits.max(dim=1)[0], phrases
|
| 98 |
|
| 99 |
|
| 100 |
def annotate(image_source: np.ndarray, boxes: torch.Tensor, logits: torch.Tensor, phrases: List[str]) -> np.ndarray:
|
| 101 |
+
"""
|
| 102 |
+
This function annotates an image with bounding boxes and labels.
|
| 103 |
+
|
| 104 |
+
Parameters:
|
| 105 |
+
image_source (np.ndarray): The source image to be annotated.
|
| 106 |
+
boxes (torch.Tensor): A tensor containing bounding box coordinates.
|
| 107 |
+
logits (torch.Tensor): A tensor containing confidence scores for each bounding box.
|
| 108 |
+
phrases (List[str]): A list of labels for each bounding box.
|
| 109 |
+
|
| 110 |
+
Returns:
|
| 111 |
+
np.ndarray: The annotated image.
|
| 112 |
+
"""
|
| 113 |
h, w, _ = image_source.shape
|
| 114 |
boxes = boxes * torch.Tensor([w, h, w, h])
|
| 115 |
xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy()
|
|
|
|
| 125 |
annotated_frame = cv2.cvtColor(image_source, cv2.COLOR_RGB2BGR)
|
| 126 |
annotated_frame = box_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels)
|
| 127 |
return annotated_frame
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
# ----------------------------------------------------------------------------------------------------------------------
|
| 131 |
+
# NEW API
|
| 132 |
+
# ----------------------------------------------------------------------------------------------------------------------
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
class Model:
|
| 136 |
+
|
| 137 |
+
def __init__(
|
| 138 |
+
self,
|
| 139 |
+
model_config_path: str,
|
| 140 |
+
model_checkpoint_path: str,
|
| 141 |
+
device: str = "cuda"
|
| 142 |
+
):
|
| 143 |
+
self.model = load_model(
|
| 144 |
+
model_config_path=model_config_path,
|
| 145 |
+
model_checkpoint_path=model_checkpoint_path,
|
| 146 |
+
device=device
|
| 147 |
+
).to(device)
|
| 148 |
+
self.device = device
|
| 149 |
+
|
| 150 |
+
def predict_with_caption(
|
| 151 |
+
self,
|
| 152 |
+
image: np.ndarray,
|
| 153 |
+
caption: str,
|
| 154 |
+
box_threshold: float = 0.35,
|
| 155 |
+
text_threshold: float = 0.25
|
| 156 |
+
) -> Tuple[sv.Detections, List[str]]:
|
| 157 |
+
"""
|
| 158 |
+
import cv2
|
| 159 |
+
|
| 160 |
+
image = cv2.imread(IMAGE_PATH)
|
| 161 |
+
|
| 162 |
+
model = Model(model_config_path=CONFIG_PATH, model_checkpoint_path=WEIGHTS_PATH)
|
| 163 |
+
detections, labels = model.predict_with_caption(
|
| 164 |
+
image=image,
|
| 165 |
+
caption=caption,
|
| 166 |
+
box_threshold=BOX_THRESHOLD,
|
| 167 |
+
text_threshold=TEXT_THRESHOLD
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
import supervision as sv
|
| 171 |
+
|
| 172 |
+
box_annotator = sv.BoxAnnotator()
|
| 173 |
+
annotated_image = box_annotator.annotate(scene=image, detections=detections, labels=labels)
|
| 174 |
+
"""
|
| 175 |
+
processed_image = Model.preprocess_image(image_bgr=image).to(self.device)
|
| 176 |
+
boxes, logits, phrases = predict(
|
| 177 |
+
model=self.model,
|
| 178 |
+
image=processed_image,
|
| 179 |
+
caption=caption,
|
| 180 |
+
box_threshold=box_threshold,
|
| 181 |
+
text_threshold=text_threshold,
|
| 182 |
+
device=self.device)
|
| 183 |
+
source_h, source_w, _ = image.shape
|
| 184 |
+
detections = Model.post_process_result(
|
| 185 |
+
source_h=source_h,
|
| 186 |
+
source_w=source_w,
|
| 187 |
+
boxes=boxes,
|
| 188 |
+
logits=logits)
|
| 189 |
+
return detections, phrases
|
| 190 |
+
|
| 191 |
+
def predict_with_classes(
|
| 192 |
+
self,
|
| 193 |
+
image: np.ndarray,
|
| 194 |
+
classes: List[str],
|
| 195 |
+
box_threshold: float,
|
| 196 |
+
text_threshold: float
|
| 197 |
+
) -> sv.Detections:
|
| 198 |
+
"""
|
| 199 |
+
import cv2
|
| 200 |
+
|
| 201 |
+
image = cv2.imread(IMAGE_PATH)
|
| 202 |
+
|
| 203 |
+
model = Model(model_config_path=CONFIG_PATH, model_checkpoint_path=WEIGHTS_PATH)
|
| 204 |
+
detections = model.predict_with_classes(
|
| 205 |
+
image=image,
|
| 206 |
+
classes=CLASSES,
|
| 207 |
+
box_threshold=BOX_THRESHOLD,
|
| 208 |
+
text_threshold=TEXT_THRESHOLD
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
import supervision as sv
|
| 213 |
+
|
| 214 |
+
box_annotator = sv.BoxAnnotator()
|
| 215 |
+
annotated_image = box_annotator.annotate(scene=image, detections=detections)
|
| 216 |
+
"""
|
| 217 |
+
caption = ". ".join(classes)
|
| 218 |
+
processed_image = Model.preprocess_image(image_bgr=image).to(self.device)
|
| 219 |
+
boxes, logits, phrases = predict(
|
| 220 |
+
model=self.model,
|
| 221 |
+
image=processed_image,
|
| 222 |
+
caption=caption,
|
| 223 |
+
box_threshold=box_threshold,
|
| 224 |
+
text_threshold=text_threshold,
|
| 225 |
+
device=self.device)
|
| 226 |
+
source_h, source_w, _ = image.shape
|
| 227 |
+
detections = Model.post_process_result(
|
| 228 |
+
source_h=source_h,
|
| 229 |
+
source_w=source_w,
|
| 230 |
+
boxes=boxes,
|
| 231 |
+
logits=logits)
|
| 232 |
+
class_id = Model.phrases2classes(phrases=phrases, classes=classes)
|
| 233 |
+
detections.class_id = class_id
|
| 234 |
+
return detections
|
| 235 |
+
|
| 236 |
+
@staticmethod
|
| 237 |
+
def preprocess_image(image_bgr: np.ndarray) -> torch.Tensor:
|
| 238 |
+
transform = T.Compose(
|
| 239 |
+
[
|
| 240 |
+
T.RandomResize([800], max_size=1333),
|
| 241 |
+
T.ToTensor(),
|
| 242 |
+
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
| 243 |
+
]
|
| 244 |
+
)
|
| 245 |
+
image_pillow = Image.fromarray(cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB))
|
| 246 |
+
image_transformed, _ = transform(image_pillow, None)
|
| 247 |
+
return image_transformed
|
| 248 |
+
|
| 249 |
+
@staticmethod
|
| 250 |
+
def post_process_result(
|
| 251 |
+
source_h: int,
|
| 252 |
+
source_w: int,
|
| 253 |
+
boxes: torch.Tensor,
|
| 254 |
+
logits: torch.Tensor
|
| 255 |
+
) -> sv.Detections:
|
| 256 |
+
boxes = boxes * torch.Tensor([source_w, source_h, source_w, source_h])
|
| 257 |
+
xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy()
|
| 258 |
+
confidence = logits.numpy()
|
| 259 |
+
return sv.Detections(xyxy=xyxy, confidence=confidence)
|
| 260 |
+
|
| 261 |
+
@staticmethod
|
| 262 |
+
def phrases2classes(phrases: List[str], classes: List[str]) -> np.ndarray:
|
| 263 |
+
class_ids = []
|
| 264 |
+
for phrase in phrases:
|
| 265 |
+
for class_ in classes:
|
| 266 |
+
if class_ in phrase:
|
| 267 |
+
class_ids.append(classes.index(class_))
|
| 268 |
+
break
|
| 269 |
+
else:
|
| 270 |
+
class_ids.append(None)
|
| 271 |
+
return np.array(class_ids)
|
GroundingDINO/groundingdino/util/slconfig.py
CHANGED
|
@@ -2,13 +2,13 @@
|
|
| 2 |
# Modified from mmcv
|
| 3 |
# ==========================================================
|
| 4 |
import ast
|
|
|
|
| 5 |
import os.path as osp
|
| 6 |
import shutil
|
| 7 |
import sys
|
| 8 |
import tempfile
|
| 9 |
from argparse import Action
|
| 10 |
from importlib import import_module
|
| 11 |
-
import platform
|
| 12 |
|
| 13 |
from addict import Dict
|
| 14 |
from yapf.yapflib.yapf_api import FormatCode
|
|
@@ -81,7 +81,7 @@ class SLConfig(object):
|
|
| 81 |
with tempfile.TemporaryDirectory() as temp_config_dir:
|
| 82 |
temp_config_file = tempfile.NamedTemporaryFile(dir=temp_config_dir, suffix=".py")
|
| 83 |
temp_config_name = osp.basename(temp_config_file.name)
|
| 84 |
-
if
|
| 85 |
temp_config_file.close()
|
| 86 |
shutil.copyfile(filename, osp.join(temp_config_dir, temp_config_name))
|
| 87 |
temp_module_name = osp.splitext(temp_config_name)[0]
|
|
|
|
| 2 |
# Modified from mmcv
|
| 3 |
# ==========================================================
|
| 4 |
import ast
|
| 5 |
+
import os
|
| 6 |
import os.path as osp
|
| 7 |
import shutil
|
| 8 |
import sys
|
| 9 |
import tempfile
|
| 10 |
from argparse import Action
|
| 11 |
from importlib import import_module
|
|
|
|
| 12 |
|
| 13 |
from addict import Dict
|
| 14 |
from yapf.yapflib.yapf_api import FormatCode
|
|
|
|
| 81 |
with tempfile.TemporaryDirectory() as temp_config_dir:
|
| 82 |
temp_config_file = tempfile.NamedTemporaryFile(dir=temp_config_dir, suffix=".py")
|
| 83 |
temp_config_name = osp.basename(temp_config_file.name)
|
| 84 |
+
if os.name == 'nt':
|
| 85 |
temp_config_file.close()
|
| 86 |
shutil.copyfile(filename, osp.join(temp_config_dir, temp_config_name))
|
| 87 |
temp_module_name = osp.splitext(temp_config_name)[0]
|
GroundingDINO/groundingdino/util/utils.py
CHANGED
|
@@ -597,10 +597,12 @@ def targets_to(targets: List[Dict[str, Any]], device):
|
|
| 597 |
|
| 598 |
|
| 599 |
def get_phrases_from_posmap(
|
| 600 |
-
posmap: torch.BoolTensor, tokenized: Dict, tokenizer: AutoTokenizer
|
| 601 |
):
|
| 602 |
assert isinstance(posmap, torch.Tensor), "posmap must be torch.Tensor"
|
| 603 |
if posmap.dim() == 1:
|
|
|
|
|
|
|
| 604 |
non_zero_idx = posmap.nonzero(as_tuple=True)[0].tolist()
|
| 605 |
token_ids = [tokenized["input_ids"][i] for i in non_zero_idx]
|
| 606 |
return tokenizer.decode(token_ids)
|
|
|
|
| 597 |
|
| 598 |
|
| 599 |
def get_phrases_from_posmap(
|
| 600 |
+
posmap: torch.BoolTensor, tokenized: Dict, tokenizer: AutoTokenizer, left_idx: int = 0, right_idx: int = 255
|
| 601 |
):
|
| 602 |
assert isinstance(posmap, torch.Tensor), "posmap must be torch.Tensor"
|
| 603 |
if posmap.dim() == 1:
|
| 604 |
+
posmap[0: left_idx + 1] = False
|
| 605 |
+
posmap[right_idx:] = False
|
| 606 |
non_zero_idx = posmap.nonzero(as_tuple=True)[0].tolist()
|
| 607 |
token_ids = [tokenized["input_ids"][i] for i in non_zero_idx]
|
| 608 |
return tokenizer.decode(token_ids)
|
GroundingDINO/requirements.txt
CHANGED
|
@@ -6,5 +6,5 @@ yapf
|
|
| 6 |
timm
|
| 7 |
numpy
|
| 8 |
opencv-python
|
| 9 |
-
supervision
|
| 10 |
-
pycocotools
|
|
|
|
| 6 |
timm
|
| 7 |
numpy
|
| 8 |
opencv-python
|
| 9 |
+
supervision
|
| 10 |
+
pycocotools
|
GroundingDINO/setup.py
CHANGED
|
@@ -24,6 +24,18 @@ import glob
|
|
| 24 |
import os
|
| 25 |
import subprocess
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
import torch
|
| 28 |
from setuptools import find_packages, setup
|
| 29 |
from torch.utils.cpp_extension import CUDA_HOME, CppExtension, CUDAExtension
|
|
@@ -70,7 +82,7 @@ def get_extensions():
|
|
| 70 |
extra_compile_args = {"cxx": []}
|
| 71 |
define_macros = []
|
| 72 |
|
| 73 |
-
if torch.cuda.is_available()
|
| 74 |
print("Compiling with CUDA")
|
| 75 |
extension = CUDAExtension
|
| 76 |
sources += source_cuda
|
|
|
|
| 24 |
import os
|
| 25 |
import subprocess
|
| 26 |
|
| 27 |
+
import subprocess
|
| 28 |
+
import sys
|
| 29 |
+
|
| 30 |
+
def install_torch():
|
| 31 |
+
try:
|
| 32 |
+
import torch
|
| 33 |
+
except ImportError:
|
| 34 |
+
subprocess.check_call([sys.executable, "-m", "pip", "install", "torch"])
|
| 35 |
+
|
| 36 |
+
# Call the function to ensure torch is installed
|
| 37 |
+
install_torch()
|
| 38 |
+
|
| 39 |
import torch
|
| 40 |
from setuptools import find_packages, setup
|
| 41 |
from torch.utils.cpp_extension import CUDA_HOME, CppExtension, CUDAExtension
|
|
|
|
| 82 |
extra_compile_args = {"cxx": []}
|
| 83 |
define_macros = []
|
| 84 |
|
| 85 |
+
if CUDA_HOME is not None and (torch.cuda.is_available() or "TORCH_CUDA_ARCH_LIST" in os.environ):
|
| 86 |
print("Compiling with CUDA")
|
| 87 |
extension = CUDAExtension
|
| 88 |
sources += source_cuda
|