merve's picture
merve HF Staff
Add Qwen3VL & moondream3
f793138 verified
raw
history blame
15.4 kB
import json
import time
import gradio as gr
import numpy as np
from gradio.themes.ocean import Ocean
from PIL import Image
from qwen_vl_utils import process_vision_info
from transformers import (
AutoModelForCausalLM,
AutoProcessor,
Qwen3VLForConditionalGeneration,
)
from spaces import GPU
import supervision as sv
model_qwen_id = "Qwen/Qwen3-VL-4B-Instruct"
model_moondream_id = "moondream/moondream3-preview"
model_qwen = Qwen3VLForConditionalGeneration.from_pretrained(
model_qwen_id, torch_dtype="auto", device_map="auto",
)
model_moondream = AutoModelForCausalLM.from_pretrained(
model_moondream_id,
trust_remote_code=True,
device_map={"": "cuda"},
)
def extract_model_short_name(model_id):
return model_id.split("/")[-1].replace("-", " ").replace("_", " ")
model_qwen_name = extract_model_short_name(model_qwen_id)
model_moondream_name = extract_model_short_name(model_moondream_id)
processor_qwen = AutoProcessor.from_pretrained(model_qwen_id)
def create_annotated_image(image, json_data, height, width):
try:
parsed_json_data = json_data.split("```json")[1].split("```")[0]
bbox_data = json.loads(parsed_json_data)
except Exception:
return image
original_width, original_height = image.size
x_scale = original_width / width
y_scale = original_height / height
points = []
point_labels = []
for item in bbox_data:
label = item.get("label", "")
if "point_2d" in item:
x, y = item["point_2d"]
scaled_x = int(x * x_scale)
scaled_y = int(y * y_scale)
points.append([scaled_x, scaled_y])
point_labels.append(label)
annotated_image = np.array(image.convert("RGB"))
detections = sv.Detections.from_vlm(vlm = sv.VLM.QWEN_2_5_VL,
result=json_data,
input_wh=(original_width,
original_height),
resolution_wh=(original_width,
original_height))
bounding_box_annotator = sv.BoxAnnotator(color_lookup=sv.ColorLookup.INDEX)
label_annotator = sv.LabelAnnotator(color_lookup=sv.ColorLookup.INDEX)
annotated_image = bounding_box_annotator.annotate(
scene=annotated_image, detections=detections
)
annotated_image = label_annotator.annotate(
scene=annotated_image, detections=detections
)
if points:
points_array = np.array(points).reshape(1, -1, 2)
key_points = sv.KeyPoints(xy=points_array)
vertex_annotator = sv.VertexAnnotator(radius=5, color=sv.Color.BLUE)
# vertex_label_annotator = sv.VertexLabelAnnotator(text_scale=0.5, border_radius=2)
annotated_image = vertex_annotator.annotate(
scene=annotated_image, key_points=key_points
)
# annotated_image = vertex_label_annotator.annotate(
# scene=annotated_image,
# key_points=key_points,
# labels=point_labels
# )
return Image.fromarray(annotated_image)
def create_annotated_image_normalized(image, json_data, label="object"):
if not isinstance(json_data, dict):
return image
original_width, original_height = image.size
annotated_image = np.array(image.convert("RGB"))
points = []
if "points" in json_data:
for point in json_data.get("points", []):
x = int(point["x"] * original_width)
y = int(point["y"] * original_height)
points.append([x, y])
if "reasoning" in json_data:
for grounding in json_data["reasoning"].get("grounding", []):
for x_norm, y_norm in grounding.get("points", []):
x = int(x_norm * original_width)
y = int(y_norm * original_height)
points.append([x, y])
if points:
points_array = np.array(points).reshape(1, -1, 2)
key_points = sv.KeyPoints(xy=points_array)
vertex_annotator = sv.VertexAnnotator(radius=5, color=sv.Color.RED)
annotated_image = vertex_annotator.annotate(
scene=annotated_image, key_points=key_points
)
if "objects" in json_data:
detections = sv.Detections.from_vlm(sv.VLM.MOONDREAM,json_data,
resolution_wh=(original_width,
original_height))
bounding_box_annotator = sv.BoxAnnotator(color_lookup=sv.ColorLookup.INDEX)
label_annotator = sv.LabelAnnotator(color_lookup=sv.ColorLookup.INDEX)
labels = [label for _ in detections.xyxy]
annotated_image = bounding_box_annotator.annotate(
scene=annotated_image, detections=detections
)
annotated_image = label_annotator.annotate(
scene=annotated_image, detections=detections, labels=labels
)
return Image.fromarray(annotated_image)
def parse_qwen3_json(json_output):
lines = json_output.splitlines()
for i, line in enumerate(lines):
if line == "```json":
json_output = "\n".join(lines[i+1:])
json_output = json_output.split("```")[0]
break
try:
boxes = json.loads(json_output)
except json.JSONDecodeError:
end_idx = json_output.rfind('"}') + len('"}')
truncated_text = json_output[:end_idx] + "]"
boxes = json.loads(truncated_text)
if not isinstance(boxes, list):
boxes = [boxes]
return boxes
def create_annotated_image_qwen3(image, json_output):
try:
boxes = parse_qwen3_json(json_output)
except Exception as e:
print(f"Error parsing JSON: {e}")
return image
if not boxes:
return image
original_width, original_height = image.size
annotated_image = np.array(image.convert("RGB"))
xyxy = []
labels = []
for box in boxes:
if "bbox_2d" in box and "label" in box:
x1, y1, x2, y2 = box["bbox_2d"]
scale = 1000
x1 = max(0, min(scale, x1)) / scale * original_width
y1 = max(0, min(scale, y1)) / scale * original_height
x2 = max(0, min(scale, x2)) / scale * original_width
y2 = max(0, min(scale, y2)) / scale * original_height
# Ensure x1 <= x2 and y1 <= y2
if x1 > x2: x1, x2 = x2, x1
if y1 > y2: y1, y2 = y2, y1
xyxy.append([int(x1), int(y1), int(x2), int(y2)])
labels.append(box["label"])
if not xyxy:
return image
detections = sv.Detections(
xyxy=np.array(xyxy),
class_id=np.arange(len(xyxy))
)
bounding_box_annotator = sv.BoxAnnotator(color_lookup=sv.ColorLookup.INDEX)
label_annotator = sv.LabelAnnotator(color_lookup=sv.ColorLookup.INDEX)
annotated_image = bounding_box_annotator.annotate(
scene=annotated_image, detections=detections
)
annotated_image = label_annotator.annotate(
scene=annotated_image, detections=detections, labels=labels
)
return Image.fromarray(annotated_image)
@GPU
def detect_qwen(image, prompt):
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": prompt},
],
}
]
t0 = time.perf_counter()
inputs = processor_qwen.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_dict=True,
return_tensors="pt"
).to(model_qwen.device)
generated_ids = model_qwen.generate(**inputs, max_new_tokens=1024)
generated_ids_trimmed = [
out_ids[len(in_ids) :]
for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor_qwen.batch_decode(
generated_ids_trimmed,
skip_special_tokens=True,
clean_up_tokenization_spaces=False,
)[0]
elapsed_ms = (time.perf_counter() - t0) * 1_000
annotated_image = create_annotated_image_qwen3(image, output_text)
time_taken = f"**Inference time ({model_qwen_name}):** {elapsed_ms:.0f} ms"
return annotated_image, output_text, time_taken
@GPU
def detect_moondream(image, prompt, category_input):
t0 = time.perf_counter()
if category_input in ["Object Detection", "Visual Grounding + Object Detection"]:
output_text = model_moondream.detect(image=image, object=prompt)
elif category_input == "Visual Grounding + Keypoint Detection":
output_text = model_moondream.point(image=image, object=prompt)
else:
output_text = model_moondream.query(
image=image, question=prompt, reasoning=True
)
elapsed_ms = (time.perf_counter() - t0) * 1_000
annotated_image = create_annotated_image_normalized(
image=image, json_data=output_text, label="object"
)
time_taken = f"**Inference time ({model_moondream_name}):** {elapsed_ms:.0f} ms"
return annotated_image, output_text, time_taken
def detect(image, prompt_model_1, prompt_model_2, category_input):
STANDARD_SIZE = (1024, 1024)
image.thumbnail(STANDARD_SIZE)
annotated_image_model_1, output_text_model_1, timing_1 = detect_qwen(
image, prompt_model_1
)
annotated_image_model_2, output_text_model_2, timing_2 = detect_moondream(
image, prompt_model_2, category_input
)
return (
annotated_image_model_1,
output_text_model_1,
timing_1,
annotated_image_model_2,
output_text_model_2,
timing_2,
)
css_hide_share = """
button#gradio-share-link-button-0 {
display: none !important;
}
"""
with gr.Blocks(theme=Ocean(), css=css_hide_share) as demo:
gr.Markdown("# 👓 Object Understanding with Vision Language Models")
gr.Markdown(
"### Explore object detection, visual grounding, keypoint detection, and/or object counting through natural language prompts."
)
gr.Markdown("""
*Powered by [Qwen3-VL 4B](https://huggingface.co/Qwen/Qwen3-VL-4B-Instruct) and [Moondream 3 Preview](https://huggingface.co/moondream/moondream3-preview). Inspired by the tutorial [Object Detection and Visual Grounding with Qwen 2.5](https://pyimagesearch.com/2025/06/09/object-detection-and-visual-grounding-with-qwen-2-5/) on PyImageSearch.*
*Moondream 3 uses the [moondream-preview](https://huggingface.co/vikhyatk/moondream2/blob/main/moondream.py), selecting `detect` for categories with "Object Detection" `point` for the ones with "Keypoint Detection", and reasoning-based querying for all others.*
""")
with gr.Row():
with gr.Column(scale=2):
image_input = gr.Image(label="Upload an image", type="pil", height=400)
prompt_input_model_1 = gr.Textbox(
label=f"Enter your prompt for {model_qwen_name}",
placeholder="e.g., Detect all red cars in the image",
)
prompt_input_model_2 = gr.Textbox(
label=f"Enter your prompt for {model_moondream_name}",
placeholder="e.g., Detect all blue cars in the image",
)
categories = [
"Object Detection",
"Object Counting",
"Visual Grounding + Keypoint Detection",
"Visual Grounding + Object Detection",
"General query",
]
category_input = gr.Dropdown(
choices=categories, label="Category", interactive=True
)
generate_btn = gr.Button(value="Generate")
with gr.Column(scale=1):
output_image_model_1 = gr.Image(
type="pil", label=f"Annotated image for {model_qwen_name}", height=400
)
output_textbox_model_1 = gr.Textbox(
label=f"Model response for {model_qwen_name}", lines=10
)
output_time_model_1 = gr.Markdown()
with gr.Column(scale=1):
output_image_model_2 = gr.Image(
type="pil",
label=f"Annotated image for {model_moondream_name}",
height=400,
)
output_textbox_model_2 = gr.Textbox(
label=f"Model response for {model_moondream_name}", lines=10
)
output_time_model_2 = gr.Markdown()
gr.Markdown("### Examples")
example_prompts = [
[
"examples/example_1.jpg",
"locate every instance in the image. Report bbox coordinates in JSON format.",
"objects",
"Object Detection",
],
[
"examples/example_2.JPG",
'locate every instance that belongs to the following categories: "candy, hand". Report bbox coordinates in JSON format.',
"candies",
"Object Detection",
],
[
"examples/example_1.jpg",
"Count the number of red cars in the image.",
"Count the number of red cars in the image.",
"Object Counting",
],
[
"examples/example_2.JPG",
"Count the number of blue candies in the image.",
"Count the number of blue candies in the image.",
"Object Counting",
],
[
"examples/example_1.jpg",
'locate every instance that belongs to the following categories: "red car". Report bbox coordinates in JSON format..',
"red cars",
"Visual Grounding + Keypoint Detection",
],
[
"examples/example_2.JPG",
"Identify the blue candies in this image, detect their key points and return their positions in the form of points.",
"blue candies",
"Visual Grounding + Keypoint Detection",
],
[
"examples/example_1.jpg",
'locate every instance that belongs to the following categories: "leading red car". Report bbox coordinates in JSON format..',
"leading red car",
"Visual Grounding + Object Detection",
],
[
"examples/example_2.JPG",
'locate every instance that belongs to the following categories: "blue candy located at the top of the group". Report bbox coordinates in JSON format.',
"blue candy located at the top of the group",
"Visual Grounding + Object Detection",
],
]
gr.Examples(
examples=example_prompts,
inputs=[
image_input,
prompt_input_model_1,
prompt_input_model_2,
category_input,
],
label="Click an example to populate the input",
)
generate_btn.click(
fn=detect,
inputs=[
image_input,
prompt_input_model_1,
prompt_input_model_2,
category_input,
],
outputs=[
output_image_model_1,
output_textbox_model_1,
output_time_model_1,
output_image_model_2,
output_textbox_model_2,
output_time_model_2,
],
)
if __name__ == "__main__":
demo.launch()