Spaces:
Sleeping
Sleeping
File size: 32,124 Bytes
0c1e9ef b4021de 0c1e9ef 9692c9c 1cd161b 9692c9c b4021de 49f4eed b4021de 5172692 b4021de 5172692 b4021de 5172692 b4021de 5172692 b4021de 5172692 b4021de 5172692 b4021de 5172692 b4021de 5172692 b4021de 5172692 b4021de 5172692 b4021de 5172692 b4021de 5172692 b4021de 5172692 b4021de 5172692 b4021de 5172692 b4021de 5172692 b4021de 5172692 b4021de 5172692 b4021de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 |
import streamlit as st
import os
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from langchain_community.vectorstores import SupabaseVectorStore
from langchain.chains import RetrievalQA
from supabase import create_client
from langchain.prompts import PromptTemplate
from langchain.agents import Tool, create_react_agent
from langchain.tools.retriever import create_retriever_tool
from langchain.memory import ConversationSummaryBufferMemory
from langchain.agents import AgentExecutor
from langchain.schema import HumanMessage, AIMessage
from langchain.cache import InMemoryCache
from langchain.globals import set_llm_cache
from langchain.retrievers import ContextualCompressionRetriever
from langchain.retrievers.document_compressors import LLMChainExtractor
import uuid
from datetime import datetime
import json
import time
from collections import defaultdict
from tenacity import retry, stop_after_attempt, wait_exponential
# Page configuration
st.set_page_config(
page_title="AI Document Assistant",
page_icon="๐ค",
layout="wide",
initial_sidebar_state="expanded"
)
# Enable LLM caching for faster responses
set_llm_cache(InMemoryCache())
# Custom CSS for professional design
st.markdown("""
<style>
/* Import clean font */
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;500;600&display=swap');
/* Global styles */
* {
font-family: 'Inter', sans-serif;
}
/* Remove default padding/margins */
.main > div {
padding-top: 2rem;
}
/* Header styling */
.header-container {
background: #ffffff;
border-bottom: 1px solid #e5e7eb;
padding: 1.5rem 0;
margin-bottom: 0;
position: sticky;
top: 0;
z-index: 100;
}
.header-title {
font-size: 1.5rem;
font-weight: 600;
color: #111827;
margin: 0;
}
.header-subtitle {
color: #6b7280;
font-size: 0.875rem;
margin: 0.25rem 0 0 0;
}
/* Sidebar styling */
.css-1d391kg {
background-color: #f9fafb;
}
.sidebar-title {
font-weight: 600;
color: #374151;
margin-bottom: 1rem;
}
/* Session buttons */
.session-btn {
background: white;
border: 1px solid #e5e7eb;
border-radius: 8px;
padding: 12px;
margin: 6px 0;
width: 100%;
text-align: left;
cursor: pointer;
transition: all 0.2s;
color: #374151;
}
.session-btn:hover {
border-color: #3b82f6;
background: #f8fafc;
}
.session-btn.active {
background: #eff6ff;
border-color: #3b82f6;
color: #1d4ed8;
}
/* Chat container */
.chat-container {
background: #ffffff;
border: 1px solid #e5e7eb;
border-radius: 12px;
height: 500px;
overflow-y: auto;
padding: 1rem;
margin-bottom: 1rem;
}
/* Message styling */
.message {
margin-bottom: 1rem;
display: flex;
}
.message.user {
justify-content: flex-end;
}
.message-content {
max-width: 70%;
padding: 12px 16px;
border-radius: 12px;
line-height: 1.5;
}
.message.user .message-content {
background: #3b82f6;
color: white;
border-bottom-right-radius: 4px;
}
.message.bot .message-content {
background: #f3f4f6;
color: #374151;
border: 1px solid #e5e7eb;
border-bottom-left-radius: 4px;
}
.message-label {
font-size: 0.75rem;
font-weight: 500;
margin-bottom: 4px;
opacity: 0.7;
}
.message-tools {
font-size: 0.75rem;
opacity: 0.6;
margin-top: 4px;
}
/* Input area */
.input-container {
background: white;
border: 1px solid #e5e7eb;
border-radius: 12px;
padding: 1rem;
}
/* Buttons */
.stButton > button {
background: #3b82f6;
color: white;
border: none;
border-radius: 8px;
font-weight: 500;
padding: 0.5rem 1rem;
transition: background 0.2s;
}
.stButton > button:hover {
background: #2563eb;
}
/* Status indicators */
.status {
font-size: 0.875rem;
padding: 4px 8px;
border-radius: 6px;
font-weight: 500;
}
.status.connected {
background: #dcfce7;
color: #166534;
}
.status.error {
background: #fee2e2;
color: #dc2626;
}
/* Thinking indicator */
.thinking {
background: #f3f4f6;
padding: 8px 12px;
border-radius: 8px;
color: #6b7280;
font-size: 0.875rem;
margin-bottom: 1rem;
display: inline-block;
}
/* Hide streamlit elements */
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
header {visibility: hidden;}
/* Custom scrollbar */
.chat-container::-webkit-scrollbar {
width: 6px;
}
.chat-container::-webkit-scrollbar-track {
background: #f1f5f9;
border-radius: 3px;
}
.chat-container::-webkit-scrollbar-thumb {
background: #cbd5e1;
border-radius: 3px;
}
.chat-container::-webkit-scrollbar-thumb:hover {
background: #94a3b8;
}
</style>
""", unsafe_allow_html=True)
# Rate Limiter Class
class RateLimiter:
def __init__(self, max_requests=10, time_window=60):
self.requests = defaultdict(list)
self.max_requests = max_requests
self.time_window = time_window
def check_limit(self, session_id):
now = time.time()
# Clean old requests
self.requests[session_id] = [
t for t in self.requests[session_id]
if now - t < self.time_window
]
if len(self.requests[session_id]) >= self.max_requests:
return False, f"Rate limit exceeded. Please wait before sending more messages."
self.requests[session_id].append(now)
return True, ""
# Initialize session state
if 'initialized' not in st.session_state:
st.session_state.initialized = False
st.session_state.agent_executor = None
st.session_state.chat_sessions = {}
st.session_state.current_session_id = None
st.session_state.connection_status = "Not Connected"
st.session_state.sidebar_collapsed = False
st.session_state.rate_limiter = RateLimiter(max_requests=20, time_window=60)
st.session_state.supabase = None
# Keys configuration
OPENAI_API_KEY = "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"
SUPABASE_URL = "https://oszztarojsrnckvlqhhx.supabase.co"
SUPABASE_KEY = "sb_publishable_olO1Hq6urwZoIawiPvv1QQ_CjoHcDqu"
def validate_input(user_input: str) -> tuple:
"""Validate user input"""
if not user_input or len(user_input.strip()) < 3:
return False, "Query too short. Please provide more details (at least 3 characters)."
if len(user_input) > 2000:
return False, "Query too long. Please keep it under 2000 characters."
# Check for potential dangerous patterns
dangerous_patterns = ['__import__', 'exec(', 'eval(', 'os.system', 'subprocess']
if any(pattern in user_input.lower() for pattern in dangerous_patterns):
return False, "Invalid input detected. Please rephrase your question."
return True, ""
def save_session_to_db(session_id, session_data):
"""Save session to Supabase"""
try:
if st.session_state.supabase is None:
return
# Prepare messages for JSON serialization
messages_json = []
for msg in session_data['messages']:
msg_copy = msg.copy()
if 'timestamp' in msg_copy:
msg_copy['timestamp'] = msg_copy['timestamp'].isoformat()
messages_json.append(msg_copy)
st.session_state.supabase.table('chat_sessions').upsert({
'id': session_id,
'name': session_data['name'],
'created_at': session_data['created_at'].isoformat(),
'messages': json.dumps(messages_json),
'updated_at': datetime.now().isoformat()
}).execute()
except Exception as e:
st.warning(f"Could not save session to database: {str(e)}")
def load_sessions_from_db():
"""Load all sessions from database"""
try:
if st.session_state.supabase is None:
return {}
response = st.session_state.supabase.table('chat_sessions').select('*').order('created_at', desc=True).execute()
sessions = {}
for session in response.data:
session_id = session['id']
messages = json.loads(session['messages']) if session['messages'] else []
# Convert timestamp strings back to datetime
for msg in messages:
if 'timestamp' in msg and isinstance(msg['timestamp'], str):
msg['timestamp'] = datetime.fromisoformat(msg['timestamp'])
sessions[session_id] = {
'id': session_id,
'name': session['name'],
'created_at': datetime.fromisoformat(session['created_at']),
'messages': messages,
'session_memory': [],
'history': []
}
# Rebuild session memory from messages
for msg in messages:
if msg['type'] == 'user':
sessions[session_id]['session_memory'].append(HumanMessage(content=msg['content']))
else:
sessions[session_id]['session_memory'].append(AIMessage(content=msg['content']))
return sessions
except Exception as e:
st.warning(f"Could not load sessions from database: {str(e)}")
return {}
@st.cache_resource
def initialize_agent():
"""Initialize the LangChain agent with caching"""
try:
# Connect to Supabase
supabase = create_client(SUPABASE_URL, SUPABASE_KEY)
embeddings = OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY)
# Reconnect to existing vector store
vector_store = SupabaseVectorStore(
client=supabase,
embedding=embeddings,
table_name="documents"
)
# LLM setup with streaming
llm = ChatOpenAI(
model="gpt-4o-mini",
temperature=0,
openai_api_key=OPENAI_API_KEY,
streaming=False
)
# Create base retriever with better search parameters
base_retriever = vector_store.as_retriever(
search_type="similarity",
search_kwargs={
"k": 3,
}
)
# Add contextual compression for better retrieval
compressor = LLMChainExtractor.from_llm(llm)
compression_retriever = ContextualCompressionRetriever(
base_compressor=compressor,
base_retriever=base_retriever
)
# QA Chain for better answers
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=base_retriever,
return_source_documents=True
)
def qa_with_sources(query):
"""Question answering with source tracking"""
try:
result = qa_chain.invoke({"query": query})
return result["result"]
except Exception as e:
return f"Error retrieving information: {str(e)}"
# Retriever tool (core RAG function)
retriever_tool = create_retriever_tool(
retriever=base_retriever,
name="retriever",
description=(
"Use this tool to answer ANY question that might be related to or found in the uploaded or provided documents. "
"Always call this tool FIRST whenever the question could possibly require information from those documents. "
"If the question asks about facts, data, summaries, policies, reports, or anything that may come from the user's documents, "
"use this tool to retrieve the relevant content before answering."
),
)
Retriver_tool = Tool(
name="retriever",
func=retriever_tool,
description=(
"Retrieves relevant context from the user's uploaded or stored documents. "
"Use this tool for any question that might involve the content of the documents, "
"such as document summaries, factual answers, or topic-specific details."
),
)
# QA tool
qa_tool = Tool(
name="Question Answering",
func=llm.invoke,
description=(
"A general-purpose question answering tool. "
"Use this ONLY for casual or open-ended questions that are NOT related to the provided documents. "
"Examples: greetings, opinions, or general world knowledge questions (e.g., 'How are you?', 'What is AI?'). "
"Do NOT use this if the question might depend on the document contents."
),
)
# Summary tool
summary_tool = Tool(
name="Summary",
func=llm.invoke,
description="Summarizes long text passages into concise summaries using a structured summarization prompt.",
prompt=PromptTemplate(
input_variables=["input"],
template="""
You are a summarization assistant. Follow these steps to summarize the text:
1. Read the text carefully.
2. Identify the main points and key details.
3. Write a concise summary that captures the essence of the text.
Text: {input}
Summary:
""",
),
)
# Explanation tool
explanation_tool = Tool(
name="Explanation",
func=llm.invoke,
description="Explains complex concepts in simple, clear terms using examples or analogies when appropriate.",
prompt=PromptTemplate(
input_variables=["input"],
template="""
You are an explanation assistant. Follow these steps to explain the concept:
1. Understand the concept thoroughly.
2. Break down the concept into simpler parts.
3. Provide a clear and detailed explanation with examples.
Concept: {input}
Explanation:
""",
),
)
# Tool list (retriever first for prioritization)
tools = [Retriver_tool, summary_tool, explanation_tool, qa_tool]
tool_names = ", ".join([tool.name for tool in tools])
example = """
Example:
Thought: I should use the retriever tool to find relevant info.
Action: retriever
Action Input: current head of the American Red Cross
Observation: The documents do not mention the head of the American Red Cross.
Thought: The information is not in the documents.
Final Answer: I'm sorry, but I couldnโt find information about that in the provided documents.
"""
# Custom ReAct prompt
react_prompt = PromptTemplate.from_template(
example + """
You are a retrieval-augmented assistant that answers questions ONLY using the information
found in the user's provided documents.
You have access to the following tools:
{tools}
Follow this reasoning format:
Thought: Think about what the question is asking and whether you can find the answer in the user's documents.
Action: The action to take, must be one of [{tool_names}]
Action Input: The input to the action (be specific)
Observation: The result of the action
... (You may repeat this Thought/Action/Observation cycle as needed)
Final Answer: Your final grounded answer to the user's question.
### Important Grounding Rules:
- You MUST first use the 'retriever' tool to search for relevant information in the user's documents.
- Only use the information retrieved from the documents to answer the question.
- If the retrieved information does not contain a clear or relevant answer, respond with:
"I'm sorry, but I couldnโt find information about that in the provided documents."
- Do NOT use your own general knowledge or external world knowledge.
- Use the 'Question Answering' tool only for generic greetings (like 'hi', 'how are you') or clarification.
- You may use multiple tools in sequence before providing the final answer.
Previous conversation:
{chat_history}
Question: {input}
{agent_scratchpad}
"""
).partial(
tools="\n".join([f"{tool.name}: {tool.description}" for tool in tools]),
tool_names=tool_names
)
# Create agent
custom_agent = create_react_agent(llm=llm, tools=tools, prompt=react_prompt)
return custom_agent, tools, supabase, "Connected Successfully"
except Exception as e:
return None, None, None, f"Connection Error: {str(e)}"
def create_new_session():
"""Create a new chat session"""
session_id = str(uuid.uuid4())
session_name = f"Chat {len(st.session_state.chat_sessions) + 1}"
# Initialize session data
st.session_state.chat_sessions[session_id] = {
"id": session_id,
"name": session_name,
"created_at": datetime.now(),
"messages": [],
"session_memory": [],
"history": []
}
st.session_state.current_session_id = session_id
# Save to database
save_session_to_db(session_id, st.session_state.chat_sessions[session_id])
return session_id
def get_recent_context(session_data, max_messages=10):
"""Get only recent messages to avoid context overflow"""
recent_messages = session_data["session_memory"][-max_messages*2:] if len(session_data["session_memory"]) > max_messages*2 else session_data["session_memory"]
return recent_messages
def get_agent_executor_for_session(session_id):
"""Get agent executor with session-specific memory"""
if not st.session_state.initialized:
return None
session_data = st.session_state.chat_sessions[session_id]
# Get recent context to avoid overwhelming the model
recent_memory = get_recent_context(session_data, max_messages=8)
# Create summary buffer memory for this session
memory = ConversationSummaryBufferMemory(
llm=ChatOpenAI(model="gpt-4o-mini", openai_api_key=OPENAI_API_KEY),
memory_key="chat_history",
return_messages=True,
output_key="output",
max_token_limit=1000
)
# Restore recent session memory
memory.chat_memory.messages = recent_memory
# Create agent executor
agent_executor = AgentExecutor(
agent=st.session_state.agent,
tools=st.session_state.tools,
memory=memory,
verbose=True,
handle_parsing_errors="Check your output and make sure it follows the correct format.",
return_intermediate_steps=True,
max_iterations=5,
max_execution_time=45,
)
return agent_executor
@retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=2, max=10))
def get_agent_response(agent_executor, user_input):
"""Get response with retry logic"""
return agent_executor.invoke({"input": user_input})
def get_response_with_fallback(agent_executor, user_input):
"""Try multiple strategies if initial response fails"""
try:
# Primary attempt
return get_agent_response(agent_executor, user_input)
except Exception as e1:
st.warning(f"Primary attempt failed, trying simplified approach...")
try:
# Fallback 1: Try with simpler prompt
simplified_input = f"Please answer briefly: {user_input}"
return agent_executor.invoke({"input": simplified_input})
except Exception as e2:
st.warning(f"Simplified approach failed, using direct LLM...")
try:
# Fallback 2: Direct LLM call without tools
llm = ChatOpenAI(model="gpt-4o-mini", openai_api_key=OPENAI_API_KEY)
response_content = llm.invoke(user_input).content
return {"output": response_content, "intermediate_steps": []}
except Exception as e3:
raise Exception(f"All attempts failed: {str(e3)}")
def track_metrics(session_data):
"""Track conversation metrics"""
total_messages = len(session_data["messages"])
user_messages = sum(1 for m in session_data["messages"] if m["type"] == "user")
bot_messages = total_messages - user_messages
# Calculate session duration
if session_data["messages"]:
first_msg = session_data["messages"][0]["timestamp"]
last_msg = session_data["messages"][-1]["timestamp"]
duration = (last_msg - first_msg).seconds
else:
duration = 0
return {
"total_messages": total_messages,
"user_messages": user_messages,
"bot_messages": bot_messages,
"session_duration": duration
}
def main():
# Header
st.markdown("""
<div class="header-container">
<h1 class="header-title">๐ค AI Document Assistant</h1>
<p class="header-subtitle">Intelligent document analysis powered by LangChain</p>
</div>
""", unsafe_allow_html=True)
# Initialize agent if not done
if not st.session_state.initialized:
with st.spinner("Initializing AI Agent..."):
agent, tools, supabase, status = initialize_agent()
if agent is not None:
st.session_state.agent = agent
st.session_state.tools = tools
st.session_state.supabase = supabase
st.session_state.connection_status = status
st.session_state.initialized = True
# Load existing sessions from database
loaded_sessions = load_sessions_from_db()
if loaded_sessions:
st.session_state.chat_sessions = loaded_sessions
st.session_state.current_session_id = list(loaded_sessions.keys())[0]
else:
st.session_state.connection_status = status
# Sidebar for session management
with st.sidebar:
st.markdown('<p class="sidebar-title">๐ฌ Chat Sessions</p>', unsafe_allow_html=True)
# Connection status
status_class = "connected" if st.session_state.connection_status == "Connected Successfully" else "error"
status_text = "๐ข Connected" if status_class == "connected" else f"๐ด {st.session_state.connection_status}"
st.markdown(f'<div class="status {status_class}">{status_text}</div>', unsafe_allow_html=True)
st.markdown("---")
# New session button
if st.button("+ New Chat", use_container_width=True):
create_new_session()
st.rerun()
# Display sessions
if st.session_state.chat_sessions:
for session_id, session_data in st.session_state.chat_sessions.items():
is_active = session_id == st.session_state.current_session_id
if st.button(
f"{session_data['name']}\n{len(session_data['messages'])} messages",
key=f"session_{session_id}",
use_container_width=True
):
st.session_state.current_session_id = session_id
st.rerun()
# Session actions
if st.session_state.current_session_id:
st.markdown("---")
# Rename session
new_name = st.text_input(
"Session Name:",
value=st.session_state.chat_sessions[st.session_state.current_session_id]["name"]
)
if st.button("Save Name", key="save_name"):
st.session_state.chat_sessions[st.session_state.current_session_id]["name"] = new_name
save_session_to_db(st.session_state.current_session_id, st.session_state.chat_sessions[st.session_state.current_session_id])
st.success("Name updated!")
st.rerun()
# Show session metrics
if st.session_state.chat_sessions[st.session_state.current_session_id]["messages"]:
metrics = track_metrics(st.session_state.chat_sessions[st.session_state.current_session_id])
st.markdown("---")
st.markdown("**Session Stats:**")
st.text(f"๐ Messages: {metrics['total_messages']}")
st.text(f"โฑ๏ธ Duration: {metrics['session_duration']}s")
# Delete session
if len(st.session_state.chat_sessions) > 1:
st.markdown("---")
if st.button("๐๏ธ Delete Chat", key="delete_session"):
# Delete from database
if st.session_state.supabase:
try:
st.session_state.supabase.table('chat_sessions').delete().eq('id', st.session_state.current_session_id).execute()
except:
pass
del st.session_state.chat_sessions[st.session_state.current_session_id]
st.session_state.current_session_id = list(st.session_state.chat_sessions.keys())[0]
st.rerun()
# Main content
if not st.session_state.initialized:
st.error("โ ๏ธ Agent initialization failed. Please check your configuration.")
return
# Create default session if none exists
if not st.session_state.chat_sessions:
create_new_session()
# Ensure current session exists
if st.session_state.current_session_id not in st.session_state.chat_sessions:
st.session_state.current_session_id = list(st.session_state.chat_sessions.keys())[0]
current_session = st.session_state.chat_sessions[st.session_state.current_session_id]
# Chat messages display
if current_session["messages"]:
for message in current_session["messages"]:
if message["type"] == "user":
st.markdown(f'''
<div class="message user">
<div class="message-content">
<div class="message-label">You</div>
{message["content"]}
</div>
</div>
''', unsafe_allow_html=True)
else:
tools_info = ""
if message.get('tools_used'):
tools_info = f'<div class="message-tools">๐ง Tools: {", ".join(message["tools_used"])}</div>'
sources_info = ""
if message.get('sources'):
sources_info = f'<div class="message-tools">๐ Sources: {len(message["sources"])} documents</div>'
st.markdown(f'''
<div class="message bot">
<div class="message-content">
<div class="message-label">Assistant</div>
{message["content"]}
{tools_info}
{sources_info}
</div>
</div>
''', unsafe_allow_html=True)
else:
st.markdown("""
<div style="text-align: center; color: #6b7280; padding: 2rem;">
๐ Start a conversation by asking a question about your documents
</div>
""", unsafe_allow_html=True)
# Input area
with st.form("chat_form", clear_on_submit=True):
col1, col2 = st.columns([5, 1])
with col1:
user_input = st.text_area(
"Message",
placeholder="Ask a question about your documents...",
height=80,
label_visibility="collapsed"
)
with col2:
st.markdown("<div style='height: 20px;'></div>", unsafe_allow_html=True)
submit_button = st.form_submit_button("Send", use_container_width=True)
# Process user input
if submit_button and user_input.strip():
# Validate input
is_valid, error_msg = validate_input(user_input)
if not is_valid:
st.error(error_msg)
return
# Check rate limit
can_proceed, rate_limit_msg = st.session_state.rate_limiter.check_limit(st.session_state.current_session_id)
if not can_proceed:
st.error(rate_limit_msg)
return
# Add user message to session
user_message = {
"type": "user",
"content": user_input,
"timestamp": datetime.now()
}
current_session["messages"].append(user_message)
current_session["session_memory"].append(HumanMessage(content=user_input))
# Show thinking indicator
thinking_placeholder = st.empty()
thinking_placeholder.markdown('<div class="thinking">๐ค Thinking...</div>', unsafe_allow_html=True)
try:
# Get agent executor for current session
agent_executor = get_agent_executor_for_session(st.session_state.current_session_id)
# Get response from agent with fallback
response = get_response_with_fallback(agent_executor, user_input)
answer = response["output"]
# Extract tools used
tools_used = []
if "intermediate_steps" in response:
for step in response["intermediate_steps"]:
if len(step) > 0 and hasattr(step[0], 'tool'):
tools_used.append(step[0].tool)
tools_used = list(set(tools_used)) if tools_used else []
# Add bot message to session
bot_message = {
"type": "bot",
"content": answer,
"timestamp": datetime.now(),
"tools_used": tools_used
}
current_session["messages"].append(bot_message)
current_session["session_memory"].append(AIMessage(content=answer))
# Save session to database
save_session_to_db(st.session_state.current_session_id, current_session)
except Exception as e:
error_message = {
"type": "bot",
"content": f"โ I encountered an error processing your request. Please try rephrasing your question or try again later.\n\nError: {str(e)}",
"timestamp": datetime.now()
}
current_session["messages"].append(error_message)
current_session["session_memory"].append(AIMessage(content=error_message["content"]))
finally:
thinking_placeholder.empty()
st.rerun()
if __name__ == "__main__":
main() |