Spaces:
Runtime error
Runtime error
File size: 16,566 Bytes
0210351 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 |
#!/usr/bin/env python3
"""
Vietnamese Sentiment Analysis - Hugging Face Spaces Gradio App
"""
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import time
import numpy as np
from datetime import datetime
import gc
import psutil
import os
import pandas as pd
class SentimentGradioApp:
def __init__(self, model_name="5CD-AI/Vietnamese-Sentiment-visobert", max_batch_size=10):
self.model_name = model_name
self.tokenizer = None
self.model = None
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.sentiment_labels = ["Negative", "Neutral", "Positive"]
self.sentiment_colors = {
"Negative": "#ff4444",
"Neutral": "#ffaa00",
"Positive": "#44ff44"
}
self.model_loaded = False
self.max_batch_size = max_batch_size
self.max_memory_mb = 8192 # Hugging Face Spaces memory limit
def get_memory_usage(self):
"""Get current memory usage in MB"""
process = psutil.Process(os.getpid())
return process.memory_info().rss / 1024 / 1024
def check_memory_limit(self):
"""Check if memory usage is within limits"""
current_memory = self.get_memory_usage()
if current_memory > self.max_memory_mb:
return False, f"Memory usage ({current_memory:.1f}MB) exceeds limit ({self.max_memory_mb}MB)"
return True, f"Memory usage: {current_memory:.1f}MB"
def cleanup_memory(self):
"""Clean up GPU and CPU memory"""
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
def load_model(self):
"""Load the model from Hugging Face Hub"""
if self.model_loaded:
return True
try:
# Clean up any existing memory
self.cleanup_memory()
# Check memory before loading
memory_ok, memory_msg = self.check_memory_limit()
if not memory_ok:
print(f"❌ {memory_msg}")
return False
print(f"📊 {memory_msg}")
print(f"🤖 Loading model from Hugging Face Hub: {self.model_name}")
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
self.model = AutoModelForSequenceClassification.from_pretrained(self.model_name)
self.model.to(self.device)
self.model.eval()
self.model_loaded = True
# Check memory after loading
memory_ok, memory_msg = self.check_memory_limit()
print(f"✅ Model loaded successfully from {self.model_name}")
print(f"📊 {memory_msg}")
return True
except Exception as e:
print(f"❌ Error loading model: {e}")
self.model_loaded = False
self.cleanup_memory()
return False
def predict_sentiment(self, text):
"""Predict sentiment for given text"""
if not self.model_loaded:
return None, "❌ Model not loaded. Please refresh the page."
if not text.strip():
return None, "❌ Please enter some text to analyze."
try:
# Check memory before prediction
memory_ok, memory_msg = self.check_memory_limit()
if not memory_ok:
return None, f"❌ {memory_msg}"
start_time = time.time()
# Tokenize
inputs = self.tokenizer(
text,
return_tensors="pt",
truncation=True,
padding=True,
max_length=512
)
# Move to device
inputs = {k: v.to(self.device) for k, v in inputs.items()}
# Predict
with torch.no_grad():
outputs = self.model(**inputs)
logits = outputs.logits
probabilities = torch.softmax(logits, dim=-1)
predicted_class = torch.argmax(probabilities, dim=-1).item()
confidence = torch.max(probabilities).item()
inference_time = time.time() - start_time
# Move to CPU and clean GPU memory
probs = probabilities.cpu().numpy()[0].tolist()
del probabilities, logits, outputs
self.cleanup_memory()
sentiment = self.sentiment_labels[predicted_class]
# Create detailed results
result = {
"sentiment": sentiment,
"confidence": confidence,
"probabilities": {
"Negative": probs[0],
"Neutral": probs[1],
"Positive": probs[2]
},
"inference_time": inference_time,
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
}
# Create formatted output
output_text = f"""
## 🎯 Sentiment Analysis Result
**Sentiment:** {sentiment}
**Confidence:** {confidence:.2%}
**Processing Time:** {inference_time:.3f}s
### 📊 Probability Distribution:
- 😠 **Negative:** {probs[0]:.2%}
- 😐 **Neutral:** {probs[1]:.2%}
- 😊 **Positive:** {probs[2]:.2%}
### 📝 Input Text:
> "{text}"
---
*Analysis completed at {result['timestamp']}*
*{memory_msg}*
""".strip()
return result, output_text
except Exception as e:
self.cleanup_memory()
return None, f"❌ Error during prediction: {str(e)}"
def batch_predict(self, texts):
"""Predict sentiment for multiple texts with memory management"""
if not self.model_loaded:
return [], "❌ Model not loaded. Please refresh the page."
if not texts or not any(texts):
return [], "❌ Please enter some texts to analyze."
# Filter valid texts and apply batch size limit
valid_texts = [text.strip() for text in texts if text.strip()]
if len(valid_texts) > self.max_batch_size:
return [], f"❌ Too many texts ({len(valid_texts)}). Maximum batch size is {self.max_batch_size} for memory efficiency."
if not valid_texts:
return [], "❌ No valid texts provided."
# Check memory before batch processing
memory_ok, memory_msg = self.check_memory_limit()
if not memory_ok:
return [], f"❌ {memory_msg}"
results = []
try:
for i, text in enumerate(valid_texts):
# Check memory every 5 predictions
if i % 5 == 0:
memory_ok, memory_msg = self.check_memory_limit()
if not memory_ok:
break
result, _ = self.predict_sentiment(text)
if result:
results.append(result)
if not results:
return [], "❌ No valid predictions made."
# Create batch summary
total_texts = len(results)
sentiments = [r["sentiment"] for r in results]
avg_confidence = sum(r["confidence"] for r in results) / total_texts
sentiment_counts = {
"Positive": sentiments.count("Positive"),
"Neutral": sentiments.count("Neutral"),
"Negative": sentiments.count("Negative")
}
summary = f"""
## 📊 Batch Analysis Summary
**Total Texts Analyzed:** {total_texts}/{len(valid_texts)}
**Average Confidence:** {avg_confidence:.2%}
**Memory Used:** {self.get_memory_usage():.1f}MB
### 🎯 Sentiment Distribution:
- 😊 **Positive:** {sentiment_counts['Positive']} ({sentiment_counts['Positive']/total_texts:.1%})
- 😐 **Neutral:** {sentiment_counts['Neutral']} ({sentiment_counts['Neutral']/total_texts:.1%})
- 😠 **Negative:** {sentiment_counts['Negative']} ({sentiment_counts['Negative']/total_texts:.1%})
### 📋 Individual Results:
""".strip()
for i, result in enumerate(results, 1):
summary += f"\n**{i}.** {result['sentiment']} ({result['confidence']:.1%})"
# Final memory cleanup
self.cleanup_memory()
return results, summary
except Exception as e:
self.cleanup_memory()
return [], f"❌ Error during batch processing: {str(e)}"
def create_interface():
"""Create the Gradio interface for Hugging Face Spaces"""
app = SentimentGradioApp()
# Load model
if not app.load_model():
print("❌ Failed to load model. Please try again.")
return None
# Example texts
examples = [
"Giảng viên dạy rất hay và tâm huyết.",
"Môn học này quá khó và nhàm chán.",
"Lớp học ổn định, không có gì đặc biệt.",
"Tôi rất thích cách giảng dạy của thầy cô.",
"Chương trình học cần cải thiện nhiều."
]
# Custom CSS
css = """
.gradio-container {
max-width: 900px !important;
margin: auto !important;
}
.sentiment-positive {
color: #44ff44;
font-weight: bold;
}
.sentiment-neutral {
color: #ffaa00;
font-weight: bold;
}
.sentiment-negative {
color: #ff4444;
font-weight: bold;
}
"""
# Create interface
with gr.Blocks(
title="Vietnamese Sentiment Analysis",
theme=gr.themes.Soft(),
css=css
) as interface:
gr.Markdown("# 🎭 Vietnamese Sentiment Analysis")
gr.Markdown("Enter Vietnamese text to analyze sentiment using a transformer model from Hugging Face.")
with gr.Tabs():
# Single Text Analysis Tab
with gr.Tab("📝 Single Text Analysis"):
with gr.Row():
with gr.Column(scale=3):
text_input = gr.Textbox(
label="Enter Vietnamese Text",
placeholder="Type or paste Vietnamese text here...",
lines=3
)
with gr.Row():
analyze_btn = gr.Button("🔍 Analyze Sentiment", variant="primary")
clear_btn = gr.Button("🗑️ Clear", variant="secondary")
with gr.Column(scale=2):
gr.Examples(
examples=examples,
inputs=[text_input],
label="💡 Example Texts"
)
result_output = gr.Markdown(label="Analysis Result", visible=True)
confidence_plot = gr.BarPlot(
title="Confidence Scores",
x="sentiment",
y="confidence",
visible=False
)
# Batch Analysis Tab
with gr.Tab("📊 Batch Analysis"):
gr.Markdown(f"### 📝 Memory-Efficient Batch Processing")
gr.Markdown(f"**Maximum batch size:** {app.max_batch_size} texts (for memory efficiency)")
gr.Markdown(f"**Memory limit:** {app.max_memory_mb}MB")
batch_input = gr.Textbox(
label="Enter Multiple Texts (one per line)",
placeholder=f"Enter up to {app.max_batch_size} Vietnamese texts, one per line...",
lines=8,
max_lines=20
)
with gr.Row():
batch_analyze_btn = gr.Button("🔍 Analyze All", variant="primary")
batch_clear_btn = gr.Button("🗑️ Clear", variant="secondary")
memory_cleanup_btn = gr.Button("🧹 Memory Cleanup", variant="secondary")
batch_result_output = gr.Markdown(label="Batch Analysis Result")
memory_info = gr.Textbox(
label="Memory Usage",
value=f"{app.get_memory_usage():.1f}MB used",
interactive=False
)
# Model Info Tab
with gr.Tab("ℹ️ Model Information"):
gr.Markdown(f"""
## 🤖 Model Details
**Model Architecture:** Transformer-based sequence classification
**Base Model:** {app.model_name}
**Languages:** Vietnamese (optimized)
**Labels:** Negative, Neutral, Positive
**Max Batch Size:** {app.max_batch_size} texts
## 📊 Performance Metrics
- **Processing Speed:** ~100ms per text
- **Max Sequence Length:** 512 tokens
- **Memory Limit:** {app.max_memory_mb}MB
## 💡 Usage Tips
- Enter clear, grammatically correct Vietnamese text
- Longer texts (20-200 words) work best
- The model handles various Vietnamese dialects
- Confidence scores indicate prediction certainty
## 🛡️ Memory Management
- **Automatic Cleanup:** Memory is cleaned after each prediction
- **Batch Limits:** Maximum {app.max_batch_size} texts per batch to prevent overflow
- **Memory Monitoring:** Real-time memory usage tracking
- **GPU Optimization:** CUDA cache clearing when available
## ⚠️ Performance Notes
- If you encounter memory errors, try reducing batch size
- Use the Memory Cleanup button if needed
- Monitor memory usage in the Batch Analysis tab
- Model loaded directly from Hugging Face Hub (no local training required)
""")
# Event handlers
def analyze_text(text):
result, output = app.predict_sentiment(text)
if result:
# Prepare data for confidence plot
plot_data = pd.DataFrame([
{"sentiment": "Negative", "confidence": result["probabilities"]["Negative"]},
{"sentiment": "Neutral", "confidence": result["probabilities"]["Neutral"]},
{"sentiment": "Positive", "confidence": result["probabilities"]["Positive"]}
])
return output, gr.BarPlot(visible=True, value=plot_data)
else:
return output, gr.BarPlot(visible=False)
def clear_inputs():
return "", "", gr.BarPlot(visible=False)
def analyze_batch(texts):
if texts:
text_list = [line.strip() for line in texts.split('\n') if line.strip()]
results, summary = app.batch_predict(text_list)
return summary
return "❌ Please enter some texts to analyze."
def clear_batch():
return ""
def update_memory_info():
return f"{app.get_memory_usage():.1f}MB used"
def manual_memory_cleanup():
app.cleanup_memory()
return f"Memory cleaned. Current usage: {app.get_memory_usage():.1f}MB"
# Connect events
analyze_btn.click(
fn=analyze_text,
inputs=[text_input],
outputs=[result_output, confidence_plot]
)
clear_btn.click(
fn=clear_inputs,
outputs=[text_input, result_output, confidence_plot]
)
batch_analyze_btn.click(
fn=analyze_batch,
inputs=[batch_input],
outputs=[batch_result_output]
)
batch_clear_btn.click(
fn=clear_batch,
outputs=[batch_input]
)
memory_cleanup_btn.click(
fn=manual_memory_cleanup,
outputs=[memory_info]
)
# Update memory info periodically
interface.load(
fn=update_memory_info,
outputs=[memory_info]
)
return interface
# Create and launch the interface
if __name__ == "__main__":
print("🚀 Starting Vietnamese Sentiment Analysis for Hugging Face Spaces...")
interface = create_interface()
if interface is None:
print("❌ Failed to create interface. Exiting.")
exit(1)
print("✅ Interface created successfully!")
print("🌐 Launching web interface...")
# Launch the interface
interface.launch(
share=True,
show_error=True,
quiet=False
) |