Spaces:
Runtime error
Runtime error
File size: 16,747 Bytes
0210351 bc9750a 0210351 bc9750a 0210351 bc9750a 0210351 bc9750a 0210351 bc9750a 0210351 bc9750a 0210351 bc9750a 0210351 bc9750a 0210351 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 |
import torch
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
TrainingArguments,
Trainer,
DataCollatorWithPadding
)
from datasets import load_dataset, DatasetDict
import numpy as np
from sklearn.metrics import accuracy_score, f1_score, precision_recall_fscore_support, classification_report
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from tqdm import tqdm
import warnings
warnings.filterwarnings('ignore')
class SentimentFineTuner:
def __init__(self, model_name="5CD-AI/Vietnamese-Sentiment-visobert", dataset_name="uitnlp/vietnamese_students_feedback"):
self.model_name = model_name
self.dataset_name = dataset_name
self.tokenizer = None
self.model = None
self.dataset = None
self.tokenized_datasets = None
def load_model_and_tokenizer(self):
"""Load the pre-trained model and tokenizer"""
print(f"Loading model: {self.model_name}")
print(f"Loading tokenizer...")
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
self.model = AutoModelForSequenceClassification.from_pretrained(self.model_name)
print("Model and tokenizer loaded successfully!")
print(f"Model architecture: {self.model.config.architectures}")
print(f"Number of labels: {self.model.config.num_labels}")
def load_and_prepare_dataset(self):
"""Load and prepare the dataset"""
print(f"Loading dataset: {self.dataset_name}")
try:
# Try loading the dataset directly
self.dataset = load_dataset(self.dataset_name)
except Exception as e:
print(f"Error loading dataset directly: {e}")
print("Attempting alternative dataset loading...")
# Alternative approach: Create a synthetic Vietnamese sentiment dataset
try:
# Try to load a different Vietnamese dataset
self.dataset = load_dataset("linhtranvi/5cdAI-Vietnamese-sentiment")
print("Loaded alternative Vietnamese sentiment dataset!")
except Exception as e2:
print(f"Alternative dataset also failed: {e2}")
print("Creating a sample Vietnamese sentiment dataset...")
self.create_sample_dataset()
return
print("Dataset loaded successfully!")
print(f"Dataset info: {self.dataset}")
# Check the dataset structure
print("\nDataset structure:")
for split in self.dataset:
print(f"{split}: {len(self.dataset[split])} samples")
print(f"Columns: {self.dataset[split].column_names}")
if len(self.dataset[split]) > 0:
print(f"Sample data: {self.dataset[split][0]}")
# The dataset should have sentiment labels
# Let's check the unique sentiment labels
if 'train' in self.dataset:
train_df = pd.DataFrame(self.dataset['train'])
if 'sentiment' in train_df.columns:
print(f"\nSentiment distribution in training set:")
print(train_df['sentiment'].value_counts())
elif 'label' in train_df.columns:
print(f"\nLabel distribution in training set:")
print(train_df['label'].value_counts())
def preprocess_function(self, examples):
"""Tokenize the dataset"""
# Get the text column
text_column = None
for col in ['sentence', 'text', 'comment', 'feedback']:
if col in examples:
text_column = col
break
if text_column is None:
# Use the first string column
for col in examples:
if isinstance(examples[col][0], str):
text_column = col
break
if text_column is None:
raise ValueError("No text column found in the dataset")
# Get the label column
label_column = None
for col in ['sentiment', 'label', 'labels']:
if col in examples:
label_column = col
break
if label_column is None:
raise ValueError("No label column found in the dataset")
# Tokenize the text (matching original model max length)
tokenized_inputs = self.tokenizer(
examples[text_column],
truncation=True,
padding=False,
max_length=256 # Matching original 5CD-AI/Vietnamese-Sentiment-visobert config
)
# Add labels
tokenized_inputs['labels'] = examples[label_column]
return tokenized_inputs
def tokenize_datasets(self):
"""Tokenize all datasets"""
print("Tokenizing datasets...")
self.tokenized_datasets = self.dataset.map(
self.preprocess_function,
batched=True,
remove_columns=self.dataset['train'].column_names
)
print("Tokenization completed!")
def compute_metrics(self, eval_pred):
"""Compute evaluation metrics"""
predictions, labels = eval_pred
predictions = np.argmax(predictions, axis=1)
accuracy = accuracy_score(labels, predictions)
f1 = f1_score(labels, predictions, average='weighted')
precision, recall, f1_weighted, _ = precision_recall_fscore_support(labels, predictions, average='weighted')
return {
'accuracy': accuracy,
'f1': f1,
'precision': precision,
'recall': recall
}
def setup_trainer(self, output_dir="./sentiment_model", learning_rate=2e-5, batch_size=16, num_epochs=5):
"""Setup the trainer for fine-tuning"""
# Data collator
data_collator = DataCollatorWithPadding(tokenizer=self.tokenizer)
# Training arguments (matching original 5CD-AI/Vietnamese-Sentiment-visobert config)
training_args = TrainingArguments(
output_dir=output_dir,
learning_rate=learning_rate,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
num_train_epochs=num_epochs,
weight_decay=0.01,
eval_strategy="epoch",
save_strategy="epoch",
load_best_model_at_end=True,
metric_for_best_model="f1",
greater_is_better=True,
push_to_hub=False,
logging_dir=f"{output_dir}/logs",
logging_steps=10,
save_total_limit=2,
seed=42,
# Original model specific parameters
gradient_accumulation_steps=1,
optim="adamw_torch", # AdamW with default betas=(0.9, 0.999), epsilon=1e-08
)
# Initialize trainer
self.trainer = Trainer(
model=self.model,
args=training_args,
train_dataset=self.tokenized_datasets["train"],
eval_dataset=self.tokenized_datasets["test"] if "test" in self.tokenized_datasets else self.tokenized_datasets["validation"],
tokenizer=self.tokenizer,
data_collator=data_collator,
compute_metrics=self.compute_metrics
)
print("Trainer setup completed!")
def train_model(self):
"""Train the model"""
print("Starting training...")
# Train the model
train_result = self.trainer.train()
print("Training completed!")
print(f"Training loss: {train_result.training_loss}")
# Save the model
self.trainer.save_model()
self.tokenizer.save_pretrained(self.trainer.args.output_dir)
print(f"Model saved to: {self.trainer.args.output_dir}")
return train_result
def evaluate_model(self):
"""Evaluate the model"""
print("Evaluating model...")
# Evaluate on test set
eval_results = self.trainer.evaluate()
print("Evaluation results:")
for key, value in eval_results.items():
print(f"{key}: {value:.4f}")
# Get predictions for detailed analysis
predictions = self.trainer.predict(self.tokenized_datasets["test"] if "test" in self.tokenized_datasets else self.tokenized_datasets["validation"])
y_pred = np.argmax(predictions.predictions, axis=1)
y_true = predictions.label_ids
# Print classification report
print("\nClassification Report:")
print(classification_report(y_true, y_pred))
return eval_results, y_pred, y_true
def plot_training_history(self):
"""Plot training history"""
if hasattr(self.trainer, 'state') and hasattr(self.trainer.state, 'log_history'):
logs = self.trainer.state.log_history
# Extract training and validation metrics
train_loss = [log['train_loss'] for log in logs if 'train_loss' in log]
eval_loss = [log['eval_loss'] for log in logs if 'eval_loss' in log]
eval_f1 = [log['eval_f1'] for log in logs if 'eval_f1' in log]
# Create plots
fig, axes = plt.subplots(1, 3, figsize=(15, 5))
# Training loss
axes[0].plot(train_loss, label='Training Loss')
axes[0].set_title('Training Loss')
axes[0].set_xlabel('Steps')
axes[0].set_ylabel('Loss')
axes[0].legend()
# Evaluation loss
axes[1].plot(eval_loss, label='Evaluation Loss')
axes[1].set_title('Evaluation Loss')
axes[1].set_xlabel('Epoch')
axes[1].set_ylabel('Loss')
axes[1].legend()
# Evaluation F1
axes[2].plot(eval_f1, label='Evaluation F1')
axes[2].set_title('Evaluation F1 Score')
axes[2].set_xlabel('Epoch')
axes[2].set_ylabel('F1 Score')
axes[2].legend()
plt.tight_layout()
plt.savefig('training_history.png', dpi=300, bbox_inches='tight')
plt.show()
print("Training history plots saved as 'training_history.png'")
def plot_confusion_matrix(self, y_true, y_pred):
"""Plot confusion matrix"""
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_true, y_pred)
plt.figure(figsize=(8, 6))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
plt.title('Confusion Matrix')
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.savefig('confusion_matrix.png', dpi=300, bbox_inches='tight')
plt.show()
print("Confusion matrix saved as 'confusion_matrix.png'")
def create_sample_dataset(self):
"""Create a sample Vietnamese sentiment dataset for demonstration"""
print("Creating sample Vietnamese sentiment dataset...")
# Sample Vietnamese texts with sentiment labels
sample_data = {
"text": [
# Positive samples
"Giảng viên dạy rất hay và tâm huyết, tôi học được nhiều kiến thức bổ ích.",
"Môn học này rất thú vị và practical, giúp tôi áp dụng được vào thực tế.",
"Thầy cô rất tận tình và hỗ trợ sinh viên, không khí lớp học rất tích cực.",
"Nội dung môn học sâu sắc, cách truyền đạt dễ hiểu, tôi rất hài lòng.",
"Phương pháp giảng dạy mới mẻ, hấp dẫn, khiến tôi say mê học tập.",
# Negative samples
"Môn học quá khó và nhàm chán, không có gì để học cả.",
"Giảng viên dạy không rõ ràng, tốc độ quá nhanh, không theo kịp.",
"Thời lượng quá ít nhưng nội dung nhiều, không thể học hết.",
"Thầy cô ít quan tâm đến sinh viên, không giải thích khi có thắc mắc.",
"Đồ án quá nặng, yêu cầu không rõ ràng, deadline quá gấp.",
# Neutral samples
"Môn học ổn định, không có gì đặc biệt để nhận xét.",
"Nội dung cơ bản, phù hợp với chương trình đề ra.",
"Lớp học bình thường, giảng viên dạy đúng theo giáo trình.",
"Đủ kiến thức cơ bản, không quá khó cũng không quá dễ.",
"Môn học như các môn khác, không có gì nổi bật.",
# Additional samples
"Tôi rất thích cách thầy cô tổ chức hoạt động nhóm, rất hiệu quả.",
"Phòng học quá nóng, thiết bị cũ, ảnh hưởng đến việc học.",
"Tài liệu học tập đầy đủ, có cả online và offline.",
"Bài tập nhiều nhưng không quá khó, giúp củng cố kiến thức.",
"Lịch học ổn, không trùng với môn học quan trọng khác."
],
"label": [
# Labels: 0 = Negative, 1 = Neutral, 2 = Positive
2, 2, 2, 2, 2, # Positive (5 samples)
0, 0, 0, 0, 0, # Negative (5 samples)
1, 1, 1, 1, 1, # Neutral (5 samples)
2, 0, 1, 1, 1 # Additional mixed (5 samples)
]
}
from datasets import Dataset
# Create dataset
full_dataset = Dataset.from_dict(sample_data)
# Split dataset
train_test_split = full_dataset.train_test_split(test_size=0.2, seed=42)
train_val_split = train_test_split["train"].train_test_split(test_size=0.25, seed=42)
self.dataset = DatasetDict({
"train": train_val_split["train"],
"validation": train_val_split["test"],
"test": train_test_split["test"]
})
print(f"Created sample dataset with {len(self.dataset['train'])} training, {len(self.dataset['validation'])} validation, and {len(self.dataset['test'])} test samples")
# Print distribution
train_df = pd.DataFrame(self.dataset['train'])
print("\nSentiment distribution in training set:")
label_counts = train_df['label'].value_counts().sort_index()
for label, count in label_counts.items():
sentiment_name = ["Negative", "Neutral", "Positive"][label]
print(f" {sentiment_name} (label {label}): {count} samples")
def run_fine_tuning(self, output_dir="./fine_tuned_sentiment_model", learning_rate=2e-5, batch_size=16, num_epochs=5):
"""Run the complete fine-tuning pipeline"""
print("=" * 60)
print("VIETNAMESE SENTIMENT ANALYSIS FINE-TUNING")
print("=" * 60)
# Load model and tokenizer
self.load_model_and_tokenizer()
# Load and prepare dataset
self.load_and_prepare_dataset()
# Tokenize datasets
self.tokenize_datasets()
# Setup trainer
self.setup_trainer(output_dir, learning_rate, batch_size, num_epochs)
# Train model
train_result = self.train_model()
# Evaluate model
eval_results, y_pred, y_true = self.evaluate_model()
# Plot results
self.plot_training_history()
self.plot_confusion_matrix(y_true, y_pred)
print("=" * 60)
print("FINE-TUNING COMPLETED SUCCESSFULLY!")
print("=" * 60)
print(f"Model saved to: {output_dir}")
print(f"Final evaluation F1: {eval_results['eval_f1']:.4f}")
print(f"Final evaluation accuracy: {eval_results['eval_accuracy']:.4f}")
return train_result, eval_results
def main():
"""Main function to run the fine-tuning"""
# Initialize the fine-tuner
fine_tuner = SentimentFineTuner()
# Run fine-tuning (matching original model configuration)
train_result, eval_results = fine_tuner.run_fine_tuning(
output_dir="./vietnamese_sentiment_finetuned",
learning_rate=2e-5, # Same as original model
batch_size=16, # Recommended batch size
num_epochs=5 # Same as original model
)
print("Fine-tuning completed successfully!")
if __name__ == "__main__":
main()
|