File size: 16,747 Bytes
0210351
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc9750a
0210351
 
 
 
bc9750a
0210351
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc9750a
0210351
 
 
 
 
bc9750a
0210351
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc9750a
 
 
 
0210351
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc9750a
0210351
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc9750a
0210351
 
bc9750a
 
 
0210351
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
import torch
from transformers import (
    AutoTokenizer, 
    AutoModelForSequenceClassification,
    TrainingArguments,
    Trainer,
    DataCollatorWithPadding
)
from datasets import load_dataset, DatasetDict
import numpy as np
from sklearn.metrics import accuracy_score, f1_score, precision_recall_fscore_support, classification_report
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from tqdm import tqdm
import warnings
warnings.filterwarnings('ignore')

class SentimentFineTuner:
    def __init__(self, model_name="5CD-AI/Vietnamese-Sentiment-visobert", dataset_name="uitnlp/vietnamese_students_feedback"):
        self.model_name = model_name
        self.dataset_name = dataset_name
        self.tokenizer = None
        self.model = None
        self.dataset = None
        self.tokenized_datasets = None
        
    def load_model_and_tokenizer(self):
        """Load the pre-trained model and tokenizer"""
        print(f"Loading model: {self.model_name}")
        print(f"Loading tokenizer...")
        
        self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
        self.model = AutoModelForSequenceClassification.from_pretrained(self.model_name)
        
        print("Model and tokenizer loaded successfully!")
        print(f"Model architecture: {self.model.config.architectures}")
        print(f"Number of labels: {self.model.config.num_labels}")
        
    def load_and_prepare_dataset(self):
        """Load and prepare the dataset"""
        print(f"Loading dataset: {self.dataset_name}")

        try:
            # Try loading the dataset directly
            self.dataset = load_dataset(self.dataset_name)
        except Exception as e:
            print(f"Error loading dataset directly: {e}")
            print("Attempting alternative dataset loading...")

            # Alternative approach: Create a synthetic Vietnamese sentiment dataset
            try:
                # Try to load a different Vietnamese dataset
                self.dataset = load_dataset("linhtranvi/5cdAI-Vietnamese-sentiment")
                print("Loaded alternative Vietnamese sentiment dataset!")
            except Exception as e2:
                print(f"Alternative dataset also failed: {e2}")
                print("Creating a sample Vietnamese sentiment dataset...")
                self.create_sample_dataset()
                return

        print("Dataset loaded successfully!")
        print(f"Dataset info: {self.dataset}")
        
        # Check the dataset structure
        print("\nDataset structure:")
        for split in self.dataset:
            print(f"{split}: {len(self.dataset[split])} samples")
            print(f"Columns: {self.dataset[split].column_names}")
            if len(self.dataset[split]) > 0:
                print(f"Sample data: {self.dataset[split][0]}")
        
        # The dataset should have sentiment labels
        # Let's check the unique sentiment labels
        if 'train' in self.dataset:
            train_df = pd.DataFrame(self.dataset['train'])
            if 'sentiment' in train_df.columns:
                print(f"\nSentiment distribution in training set:")
                print(train_df['sentiment'].value_counts())
            elif 'label' in train_df.columns:
                print(f"\nLabel distribution in training set:")
                print(train_df['label'].value_counts())
        
    def preprocess_function(self, examples):
        """Tokenize the dataset"""
        # Get the text column
        text_column = None
        for col in ['sentence', 'text', 'comment', 'feedback']:
            if col in examples:
                text_column = col
                break
        
        if text_column is None:
            # Use the first string column
            for col in examples:
                if isinstance(examples[col][0], str):
                    text_column = col
                    break
        
        if text_column is None:
            raise ValueError("No text column found in the dataset")
        
        # Get the label column
        label_column = None
        for col in ['sentiment', 'label', 'labels']:
            if col in examples:
                label_column = col
                break
        
        if label_column is None:
            raise ValueError("No label column found in the dataset")
        
        # Tokenize the text (matching original model max length)
        tokenized_inputs = self.tokenizer(
            examples[text_column],
            truncation=True,
            padding=False,
            max_length=256  # Matching original 5CD-AI/Vietnamese-Sentiment-visobert config
        )
        
        # Add labels
        tokenized_inputs['labels'] = examples[label_column]
        
        return tokenized_inputs
    
    def tokenize_datasets(self):
        """Tokenize all datasets"""
        print("Tokenizing datasets...")
        
        self.tokenized_datasets = self.dataset.map(
            self.preprocess_function,
            batched=True,
            remove_columns=self.dataset['train'].column_names
        )
        
        print("Tokenization completed!")
        
    def compute_metrics(self, eval_pred):
        """Compute evaluation metrics"""
        predictions, labels = eval_pred
        predictions = np.argmax(predictions, axis=1)
        
        accuracy = accuracy_score(labels, predictions)
        f1 = f1_score(labels, predictions, average='weighted')
        precision, recall, f1_weighted, _ = precision_recall_fscore_support(labels, predictions, average='weighted')
        
        return {
            'accuracy': accuracy,
            'f1': f1,
            'precision': precision,
            'recall': recall
        }
    
    def setup_trainer(self, output_dir="./sentiment_model", learning_rate=2e-5, batch_size=16, num_epochs=5):
        """Setup the trainer for fine-tuning"""
        
        # Data collator
        data_collator = DataCollatorWithPadding(tokenizer=self.tokenizer)
        
        # Training arguments (matching original 5CD-AI/Vietnamese-Sentiment-visobert config)
        training_args = TrainingArguments(
            output_dir=output_dir,
            learning_rate=learning_rate,
            per_device_train_batch_size=batch_size,
            per_device_eval_batch_size=batch_size,
            num_train_epochs=num_epochs,
            weight_decay=0.01,
            eval_strategy="epoch",
            save_strategy="epoch",
            load_best_model_at_end=True,
            metric_for_best_model="f1",
            greater_is_better=True,
            push_to_hub=False,
            logging_dir=f"{output_dir}/logs",
            logging_steps=10,
            save_total_limit=2,
            seed=42,
            # Original model specific parameters
            gradient_accumulation_steps=1,
            optim="adamw_torch",  # AdamW with default betas=(0.9, 0.999), epsilon=1e-08
        )
        
        # Initialize trainer
        self.trainer = Trainer(
            model=self.model,
            args=training_args,
            train_dataset=self.tokenized_datasets["train"],
            eval_dataset=self.tokenized_datasets["test"] if "test" in self.tokenized_datasets else self.tokenized_datasets["validation"],
            tokenizer=self.tokenizer,
            data_collator=data_collator,
            compute_metrics=self.compute_metrics
        )
        
        print("Trainer setup completed!")
        
    def train_model(self):
        """Train the model"""
        print("Starting training...")
        
        # Train the model
        train_result = self.trainer.train()
        
        print("Training completed!")
        print(f"Training loss: {train_result.training_loss}")
        
        # Save the model
        self.trainer.save_model()
        self.tokenizer.save_pretrained(self.trainer.args.output_dir)
        
        print(f"Model saved to: {self.trainer.args.output_dir}")
        
        return train_result
    
    def evaluate_model(self):
        """Evaluate the model"""
        print("Evaluating model...")
        
        # Evaluate on test set
        eval_results = self.trainer.evaluate()
        
        print("Evaluation results:")
        for key, value in eval_results.items():
            print(f"{key}: {value:.4f}")
        
        # Get predictions for detailed analysis
        predictions = self.trainer.predict(self.tokenized_datasets["test"] if "test" in self.tokenized_datasets else self.tokenized_datasets["validation"])
        
        y_pred = np.argmax(predictions.predictions, axis=1)
        y_true = predictions.label_ids
        
        # Print classification report
        print("\nClassification Report:")
        print(classification_report(y_true, y_pred))
        
        return eval_results, y_pred, y_true
    
    def plot_training_history(self):
        """Plot training history"""
        if hasattr(self.trainer, 'state') and hasattr(self.trainer.state, 'log_history'):
            logs = self.trainer.state.log_history
            
            # Extract training and validation metrics
            train_loss = [log['train_loss'] for log in logs if 'train_loss' in log]
            eval_loss = [log['eval_loss'] for log in logs if 'eval_loss' in log]
            eval_f1 = [log['eval_f1'] for log in logs if 'eval_f1' in log]
            
            # Create plots
            fig, axes = plt.subplots(1, 3, figsize=(15, 5))
            
            # Training loss
            axes[0].plot(train_loss, label='Training Loss')
            axes[0].set_title('Training Loss')
            axes[0].set_xlabel('Steps')
            axes[0].set_ylabel('Loss')
            axes[0].legend()
            
            # Evaluation loss
            axes[1].plot(eval_loss, label='Evaluation Loss')
            axes[1].set_title('Evaluation Loss')
            axes[1].set_xlabel('Epoch')
            axes[1].set_ylabel('Loss')
            axes[1].legend()
            
            # Evaluation F1
            axes[2].plot(eval_f1, label='Evaluation F1')
            axes[2].set_title('Evaluation F1 Score')
            axes[2].set_xlabel('Epoch')
            axes[2].set_ylabel('F1 Score')
            axes[2].legend()
            
            plt.tight_layout()
            plt.savefig('training_history.png', dpi=300, bbox_inches='tight')
            plt.show()
            print("Training history plots saved as 'training_history.png'")
    
    def plot_confusion_matrix(self, y_true, y_pred):
        """Plot confusion matrix"""
        from sklearn.metrics import confusion_matrix
        
        cm = confusion_matrix(y_true, y_pred)
        
        plt.figure(figsize=(8, 6))
        sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
        plt.title('Confusion Matrix')
        plt.xlabel('Predicted')
        plt.ylabel('Actual')
        plt.savefig('confusion_matrix.png', dpi=300, bbox_inches='tight')
        plt.show()
        print("Confusion matrix saved as 'confusion_matrix.png'")

    def create_sample_dataset(self):
        """Create a sample Vietnamese sentiment dataset for demonstration"""
        print("Creating sample Vietnamese sentiment dataset...")

        # Sample Vietnamese texts with sentiment labels
        sample_data = {
            "text": [
                # Positive samples
                "Giảng viên dạy rất hay và tâm huyết, tôi học được nhiều kiến thức bổ ích.",
                "Môn học này rất thú vị và practical, giúp tôi áp dụng được vào thực tế.",
                "Thầy cô rất tận tình và hỗ trợ sinh viên, không khí lớp học rất tích cực.",
                "Nội dung môn học sâu sắc, cách truyền đạt dễ hiểu, tôi rất hài lòng.",
                "Phương pháp giảng dạy mới mẻ, hấp dẫn, khiến tôi say mê học tập.",

                # Negative samples
                "Môn học quá khó và nhàm chán, không có gì để học cả.",
                "Giảng viên dạy không rõ ràng, tốc độ quá nhanh, không theo kịp.",
                "Thời lượng quá ít nhưng nội dung nhiều, không thể học hết.",
                "Thầy cô ít quan tâm đến sinh viên, không giải thích khi có thắc mắc.",
                "Đồ án quá nặng, yêu cầu không rõ ràng, deadline quá gấp.",

                # Neutral samples
                "Môn học ổn định, không có gì đặc biệt để nhận xét.",
                "Nội dung cơ bản, phù hợp với chương trình đề ra.",
                "Lớp học bình thường, giảng viên dạy đúng theo giáo trình.",
                "Đủ kiến thức cơ bản, không quá khó cũng không quá dễ.",
                "Môn học như các môn khác, không có gì nổi bật.",

                # Additional samples
                "Tôi rất thích cách thầy cô tổ chức hoạt động nhóm, rất hiệu quả.",
                "Phòng học quá nóng, thiết bị cũ, ảnh hưởng đến việc học.",
                "Tài liệu học tập đầy đủ, có cả online và offline.",
                "Bài tập nhiều nhưng không quá khó, giúp củng cố kiến thức.",
                "Lịch học ổn, không trùng với môn học quan trọng khác."
            ],
            "label": [
                # Labels: 0 = Negative, 1 = Neutral, 2 = Positive
                2, 2, 2, 2, 2,  # Positive (5 samples)
                0, 0, 0, 0, 0,  # Negative (5 samples)
                1, 1, 1, 1, 1,  # Neutral (5 samples)
                2, 0, 1, 1, 1   # Additional mixed (5 samples)
            ]
        }

        from datasets import Dataset

        # Create dataset
        full_dataset = Dataset.from_dict(sample_data)

        # Split dataset
        train_test_split = full_dataset.train_test_split(test_size=0.2, seed=42)
        train_val_split = train_test_split["train"].train_test_split(test_size=0.25, seed=42)

        self.dataset = DatasetDict({
            "train": train_val_split["train"],
            "validation": train_val_split["test"],
            "test": train_test_split["test"]
        })

        print(f"Created sample dataset with {len(self.dataset['train'])} training, {len(self.dataset['validation'])} validation, and {len(self.dataset['test'])} test samples")

        # Print distribution
        train_df = pd.DataFrame(self.dataset['train'])
        print("\nSentiment distribution in training set:")
        label_counts = train_df['label'].value_counts().sort_index()
        for label, count in label_counts.items():
            sentiment_name = ["Negative", "Neutral", "Positive"][label]
            print(f"  {sentiment_name} (label {label}): {count} samples")

    def run_fine_tuning(self, output_dir="./fine_tuned_sentiment_model", learning_rate=2e-5, batch_size=16, num_epochs=5):
        """Run the complete fine-tuning pipeline"""
        print("=" * 60)
        print("VIETNAMESE SENTIMENT ANALYSIS FINE-TUNING")
        print("=" * 60)
        
        # Load model and tokenizer
        self.load_model_and_tokenizer()
        
        # Load and prepare dataset
        self.load_and_prepare_dataset()
        
        # Tokenize datasets
        self.tokenize_datasets()
        
        # Setup trainer
        self.setup_trainer(output_dir, learning_rate, batch_size, num_epochs)
        
        # Train model
        train_result = self.train_model()
        
        # Evaluate model
        eval_results, y_pred, y_true = self.evaluate_model()
        
        # Plot results
        self.plot_training_history()
        self.plot_confusion_matrix(y_true, y_pred)
        
        print("=" * 60)
        print("FINE-TUNING COMPLETED SUCCESSFULLY!")
        print("=" * 60)
        print(f"Model saved to: {output_dir}")
        print(f"Final evaluation F1: {eval_results['eval_f1']:.4f}")
        print(f"Final evaluation accuracy: {eval_results['eval_accuracy']:.4f}")
        
        return train_result, eval_results

def main():
    """Main function to run the fine-tuning"""
    # Initialize the fine-tuner
    fine_tuner = SentimentFineTuner()
    
    # Run fine-tuning (matching original model configuration)
    train_result, eval_results = fine_tuner.run_fine_tuning(
        output_dir="./vietnamese_sentiment_finetuned",
        learning_rate=2e-5,  # Same as original model
        batch_size=16,        # Recommended batch size
        num_epochs=5          # Same as original model
    )
    
    print("Fine-tuning completed successfully!")

if __name__ == "__main__":
    main()