Spaces:
Running
on
Zero
Running
on
Zero
| import argparse | |
| import torch | |
| from ola_vlm.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN | |
| from ola_vlm.conversation import conv_templates | |
| from ola_vlm.model.builder import load_pretrained_model | |
| from ola_vlm.utils import disable_torch_init | |
| from ola_vlm.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path | |
| from ola_vlm.model.aux_heads.sam_utils.build_sam import sam_model_registry | |
| from ola_vlm.model.aux_heads.sam_utils.automatic_mask_generator import SamAutomaticMaskGenerator | |
| from ola_vlm.model.aux_heads.oneformer_head import OneFormerHead, OneFormerSegHead, OneFormerTaskTokenSegHead | |
| from ola_vlm.model.aux_heads.depth_anything_v2.dpt import DepthAnythingV2 | |
| from transformers import OneFormerProcessor | |
| from diffusers import ( | |
| DPMSolverMultistepScheduler, | |
| StableUnCLIPImg2ImgPipeline, | |
| ) | |
| from PIL import Image | |
| import json | |
| import os | |
| from tqdm import tqdm | |
| from icecream import ic | |
| import warnings | |
| warnings.filterwarnings("ignore") | |
| import random | |
| import numpy as np | |
| from analyze.analyze_utils import prepare_coco | |
| import math | |
| def split_list(lst, n): | |
| """Split a list into n (roughly) equal-sized chunks""" | |
| chunk_size = math.ceil(len(lst) / n) # integer division | |
| return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)] | |
| def get_chunk(lst, n, k): | |
| chunks = split_list(lst, n) | |
| return chunks[k] | |
| def set_seed(seed): | |
| random.seed(seed) | |
| np.random.seed(seed) | |
| torch.manual_seed(seed) | |
| torch.cuda.manual_seed_all(seed) | |
| def load_image(image_file): | |
| image = Image.open(image_file).convert('RGB') | |
| return image | |
| import glob | |
| def list_image_files(directory): | |
| image_extensions = ['*.png', '*.jpg', '*.jpeg', '*.gif', '*.bmp', '*.tiff'] | |
| image_files = [] | |
| for extension in image_extensions: | |
| image_files.extend(glob.glob(os.path.join(directory, extension))) | |
| return image_files | |
| def get_gen_feats(pipe, image): | |
| with torch.no_grad(): | |
| clip_ims = pipe.feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda") | |
| feat = pipe.image_encoder(clip_ims).image_embeds | |
| return feat | |
| def get_dav2_feats(dav2, image): | |
| image = image.resize((336, 336)) | |
| image = np.array(image) | |
| with torch.no_grad(): | |
| feat = dav2.infer_image(image, is_dsg=True) | |
| return feat[-1][0] | |
| def get_seg_feats(mask_generator, oneformer, oneformer_processor, seg_teacher, image): | |
| if seg_teacher == "oneformer": | |
| img = image.resize((768, 768)) | |
| inputs = oneformer_processor(img, ["panoptic"], return_tensors="pt") | |
| inputs["pixel_values"] = inputs["pixel_values"].to("cuda") | |
| with torch.no_grad(): | |
| feats = oneformer.forward_features(**inputs) | |
| else: | |
| img = np.array(image) | |
| with torch.no_grad(): | |
| mask_generator.predictor.set_image(img) | |
| feats = mask_generator.predictor.features | |
| mask_generator.predictor.reset_image() | |
| return feats | |
| def predict(args): | |
| mode = args.mode | |
| name = args.model_path.split("/")[-1] | |
| os.makedirs(f"plots/probe_scores/{name}/", exist_ok=True) | |
| if "cambrian" in name: | |
| from ola_vlm.cambrian.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN | |
| from ola_vlm.cambrian.conversation import conv_templates, SeparatorStyle | |
| from ola_vlm.cambrian.model.builder import load_pretrained_model | |
| from ola_vlm.cambrian.utils import disable_torch_init | |
| from ola_vlm.cambrian.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria | |
| disable_torch_init() | |
| model_name = get_model_name_from_path(args.model_path) | |
| tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit, device=args.device) | |
| if 'llama-2' in model_name.lower(): | |
| conv_mode = "cambrian_llama_2" | |
| elif "v1" in model_name.lower(): | |
| conv_mode = "cambrian_v1" | |
| elif "mpt" in model_name.lower(): | |
| conv_mode = "mpt" | |
| else: | |
| conv_mode = "cambrian_v0" | |
| else: | |
| from ola_vlm.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN | |
| from ola_vlm.conversation import conv_templates | |
| from ola_vlm.model.builder import load_pretrained_model | |
| from ola_vlm.utils import disable_torch_init | |
| from ola_vlm.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path | |
| disable_torch_init() | |
| model_name = get_model_name_from_path(args.model_path) | |
| tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit, device=args.device) | |
| if "mistral" in model_name.lower(): | |
| conv_mode = "mistral_instruct" | |
| elif "v1.6-34b" in model_name.lower(): | |
| conv_mode = "chatml_direct" | |
| elif "llama3" in model_name.lower(): | |
| conv_mode = "llava_llama_3" | |
| elif "qwen" in model_name.lower(): | |
| conv_mode = "llava_qwen" | |
| elif "v1" in model_name.lower(): | |
| conv_mode = "llava_v1" | |
| elif "phi" in model_name.lower(): | |
| conv_mode = "llava_phi_3" | |
| images, prompts, answers = prepare_coco(args.json_file) | |
| images = get_chunk(images, args.num_chunks, args.chunk_idx) | |
| prompts = get_chunk(prompts, args.num_chunks, args.chunk_idx) | |
| answers = get_chunk(answers, args.num_chunks, args.chunk_idx) | |
| if mode == "gen": | |
| pipe = StableUnCLIPImg2ImgPipeline.from_pretrained(f"playground/jiteshjain_sherlock/stable-diffusion-2-1-unclip", torch_dtype=torch.float16, variant="fp16") | |
| pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) | |
| pipe = pipe.to("cuda") | |
| elif mode == "seg": | |
| oneformer_processor, oneformer, mask_generator = None, None, None | |
| seg_teacher = model.config.image_seg.get("seg_teacher", "sam") | |
| if seg_teacher == "sam": | |
| sam = sam_model_registry["vit_l"](checkpoint="/mnt/projects4jw/jiteshjain_sherlock/oneformer_coco_swin_large") | |
| sam = sam.to("cuda") | |
| mask_generator = SamAutomaticMaskGenerator(sam.float()) | |
| else: | |
| oneformer_processor = OneFormerProcessor.from_pretrained("/mnt/projects4jw/jiteshjain_sherlock/oneformer_coco_swin_large") | |
| oneformer = OneFormerHead.from_pretrained("/mnt/projects4jw/jiteshjain_sherlock/oneformer_coco_swin_large") | |
| oneformer = oneformer.to("cuda") | |
| elif mode == "depth": | |
| dav2_cfg = {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]} | |
| dav2_backbone = DepthAnythingV2(**dav2_cfg) | |
| dav2_backbone.load_state_dict(torch.load("/mnt/projects4jw/jiteshjain_sherlock/depth_anything_v2_vitl.pth", map_location='cpu')) | |
| dav2_backbone = dav2_backbone.to("cuda") | |
| set_seed(42) | |
| if mode == "gen": | |
| try: | |
| layers = model.config.image_gen["layer_indices"] | |
| except: | |
| layers = [i+1 for i in range(32)] | |
| elif mode == "depth": | |
| try: | |
| layers = model.config.image_depth["layer_indices"] | |
| except: | |
| layers = [i+1 for i in range(32)] | |
| elif mode == "seg": | |
| try: | |
| layers = model.config.image_seg["layer_indices"] | |
| except: | |
| layers = [i+1 for i in range(32)] | |
| os.makedirs(f"plots/probe_scores/{name}/{mode}/", exist_ok=True) | |
| if os.path.exists(f"plots/probe_scores/{name}/{mode}/{args.num_chunks}_{args.chunk_idx}.json"): | |
| with open(f"plots/probe_scores/{name}/{mode}/{args.num_chunks}_{args.chunk_idx}.json", 'r') as f: | |
| diff_dict = json.load(f) | |
| else: | |
| diff_dict = {} | |
| i = 0 | |
| from tqdm import tqdm | |
| for fname, prompt, answer in tqdm(zip(images, prompts, answers), total=len(prompts)): | |
| # if fname.split("/")[-1] in diff_dict.keys(): | |
| # continue | |
| conv = conv_templates[conv_mode].copy() | |
| image = load_image(fname) | |
| image = image.resize((640, 640)) | |
| image_size = image.size | |
| image_tensor = process_images([image], image_processor, model.config) | |
| if type(image_tensor) is list: | |
| image_tensor = [image.to(model.device, dtype=torch.float16) for image in image_tensor] | |
| else: | |
| image_tensor = image_tensor.to(model.device, dtype=torch.float16) | |
| inp = prompt | |
| if image is not None: | |
| if model.config.mm_use_im_start_end: | |
| inp = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + inp | |
| else: | |
| inp = DEFAULT_IMAGE_TOKEN + '\n' + inp | |
| conv.append_message(conv.roles[0], inp) | |
| conv.append_message(conv.roles[1], None) | |
| prompt = conv.get_prompt() | |
| input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device) | |
| with torch.inference_mode(): | |
| out = model.get_visual_interpretations( | |
| input_ids, | |
| images=image_tensor, | |
| image_sizes=[image_size], | |
| ) | |
| if mode == "gen": | |
| embeds = out.image_embs | |
| feats = get_gen_feats(pipe, image) | |
| elif mode == "depth": | |
| embeds = out.depth_embs | |
| embeds = [emb[0][0] for emb in embeds] | |
| feats = get_dav2_feats(dav2_backbone, image) | |
| elif mode == "seg": | |
| embeds = out.seg_embs | |
| feats = get_seg_feats(mask_generator, oneformer, oneformer_processor, seg_teacher, image) | |
| layer_diff = {} | |
| for i, emb in enumerate(embeds): | |
| emb = emb.to("cuda") | |
| layer_diff[layers[i]] = torch.nn.CosineEmbeddingLoss(reduction="mean")( | |
| emb.reshape(1, -1).float(), feats.reshape(1, -1).float(), | |
| torch.ones(len(emb)).to(feats.device) | |
| ).cpu().item() | |
| from icecream import ic | |
| ic(layer_diff[layers[i]]) | |
| diff_dict[fname.split("/")[-1]] = layer_diff | |
| if i % 200 == 0: | |
| # Save progress intermittently | |
| with open(f"plots/probe_scores/{name}/{mode}/{args.num_chunks}_{args.chunk_idx}.json", 'w') as f: | |
| json.dump(diff_dict, f, indent=2) | |
| i += 1 | |
| with open(f"plots/probe_scores/{name}/{mode}/{args.num_chunks}_{args.chunk_idx}.json", 'w') as f: | |
| json.dump(diff_dict, f, indent=2) | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--model-path", type=str, default="/mnt/projects4jw/jiteshjain_sherlock/llava-v1.5-7b") | |
| parser.add_argument("--model-base", type=str, default=None) | |
| parser.add_argument("--json-file", type=str, default="/mnt/projects4jw/jiteshjain_sherlock/datasets/coco/annotations/captions_val2017.json") | |
| parser.add_argument("--device", type=str, default="cuda") | |
| parser.add_argument("--temperature", type=float, default=0.2) | |
| parser.add_argument("--max-new-tokens", type=int, default=10) | |
| parser.add_argument("--load-8bit", action="store_true") | |
| parser.add_argument("--load-4bit", action="store_true") | |
| parser.add_argument("--mode", type=str, default="gen") | |
| parser.add_argument("--num-chunks", type=int, default=1) | |
| parser.add_argument("--chunk-idx", type=int, default=0) | |
| args = parser.parse_args() | |
| predict(args) | |