Spaces:
Sleeping
Sleeping
| import os | |
| import requests | |
| import tiktoken | |
| import numpy as np | |
| # download the tiny shakespeare dataset | |
| input_file_path = os.path.join(os.path.dirname(__file__), 'input.txt') | |
| if not os.path.exists(input_file_path): | |
| data_url = 'https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt' | |
| with open(input_file_path, 'w', encoding='utf-8') as f: | |
| f.write(requests.get(data_url).text) | |
| with open(input_file_path, 'r', encoding='utf-8') as f: | |
| data = f.read() | |
| n = len(data) | |
| train_data = data[:int(n*0.9)] | |
| val_data = data[int(n*0.9):] | |
| # encode with tiktoken gpt2 bpe | |
| enc = tiktoken.get_encoding("gpt2") | |
| train_ids = enc.encode_ordinary(train_data) | |
| val_ids = enc.encode_ordinary(val_data) | |
| print(f"train has {len(train_ids):,} tokens") | |
| print(f"val has {len(val_ids):,} tokens") | |
| # export to bin files | |
| train_ids = np.array(train_ids, dtype=np.uint16) | |
| val_ids = np.array(val_ids, dtype=np.uint16) | |
| train_ids.tofile(os.path.join(os.path.dirname(__file__), 'train.bin')) | |
| val_ids.tofile(os.path.join(os.path.dirname(__file__), 'val.bin')) | |
| # train.bin has 301,966 tokens | |
| # val.bin has 36,059 tokens | |