Spaces:
Sleeping
Sleeping
| """ | |
| Gradio interface for testing the trained nanoGPT model | |
| """ | |
| import os | |
| import gradio as gr | |
| import torch | |
| import tiktoken | |
| from model import GPTConfig, GPT | |
| # Configuration | |
| MODEL_DIR = "out-srs" # Change this to your model directory | |
| DEVICE = "cpu" # Hugging Face Spaces uses CPU | |
| MAX_TOKENS = 100 | |
| TEMPERATURE = 0.8 | |
| TOP_K = 200 | |
| def load_model(): | |
| """Load the latest checkpoint from the model directory""" | |
| print(f"Loading model from {MODEL_DIR}...") | |
| # Use a specific checkpoint that we know is complete | |
| ckpt_path = os.path.join(MODEL_DIR, 'ckpt_001000.pt') | |
| print(f"Loading checkpoint: {ckpt_path}") | |
| # Load checkpoint | |
| checkpoint = torch.load(ckpt_path, map_location="cpu") | |
| # Create model | |
| gptconf = GPTConfig(**checkpoint['model_args']) | |
| model = GPT(gptconf) | |
| # Load weights | |
| state_dict = checkpoint['model'] | |
| unwanted_prefix = '_orig_mod.' | |
| for k, v in list(state_dict.items()): | |
| if k.startswith(unwanted_prefix): | |
| state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k) | |
| model.load_state_dict(state_dict) | |
| model.eval() | |
| model.to("cpu") | |
| print(f"Model loaded successfully! (iteration {checkpoint['iter_num']})") | |
| return model | |
| def load_tokenizer(): | |
| """Load the tokenizer""" | |
| # Check if there's a meta.pkl file for custom tokenizer | |
| meta_path = os.path.join('data', 'srs', 'meta.pkl') | |
| if os.path.exists(meta_path): | |
| import pickle | |
| print(f"Loading tokenizer from {meta_path}") | |
| with open(meta_path, 'rb') as f: | |
| meta = pickle.load(f) | |
| stoi, itos = meta['stoi'], meta['itos'] | |
| encode = lambda s: [stoi[c] for c in s] | |
| decode = lambda l: ''.join([itos[i] for i in l]) | |
| else: | |
| print("Using GPT-2 tokenizer") | |
| enc = tiktoken.get_encoding("gpt2") | |
| encode = lambda s: enc.encode(s, allowed_special={"<|endoftext|>"}) | |
| decode = lambda l: enc.decode(l) | |
| return encode, decode | |
| # Load model and tokenizer once at startup | |
| print("Initializing model...") | |
| model = load_model() | |
| encode, decode = load_tokenizer() | |
| print("Ready!") | |
| def generate_text(prompt, max_tokens, temperature, top_k): | |
| """Generate text from the model""" | |
| try: | |
| # Encode the prompt | |
| start_ids = encode(prompt) | |
| x = torch.tensor(start_ids, dtype=torch.long, device="cpu")[None, ...] | |
| # Generate | |
| with torch.no_grad(): | |
| y = model.generate(x, max_tokens, temperature=temperature, top_k=top_k) | |
| generated = decode(y[0].tolist()) | |
| return generated | |
| except Exception as e: | |
| return f"Error generating text: {str(e)}" | |
| # Create Gradio interface | |
| with gr.Blocks(title="SRS Conversational Model") as demo: | |
| gr.Markdown("# SRS Conversational Model") | |
| gr.Markdown("This model was trained on conversational data. Enter a prompt to see how it continues the conversation!") | |
| with gr.Row(): | |
| with gr.Column(): | |
| prompt_input = gr.Textbox( | |
| label="Prompt", | |
| placeholder="Enter your prompt here (e.g., 'Hello, how are you?')", | |
| lines=3 | |
| ) | |
| with gr.Row(): | |
| max_tokens_slider = gr.Slider( | |
| minimum=10, maximum=200, value=MAX_TOKENS, step=10, | |
| label="Max tokens to generate" | |
| ) | |
| temperature_slider = gr.Slider( | |
| minimum=0.1, maximum=2.0, value=TEMPERATURE, step=0.1, | |
| label="Temperature (creativity)" | |
| ) | |
| top_k_slider = gr.Slider( | |
| minimum=1, maximum=500, value=TOP_K, step=10, | |
| label="Top-k (diversity)" | |
| ) | |
| generate_btn = gr.Button("Generate", variant="primary") | |
| with gr.Column(): | |
| output_text = gr.Textbox( | |
| label="Generated Text", | |
| lines=10, | |
| max_lines=15 | |
| ) | |
| # Examples | |
| gr.Examples( | |
| examples=[ | |
| ["Hello, how are you?", 100, 0.8, 200], | |
| ["I think the wedding", 80, 0.7, 150], | |
| ["So anyway, let's talk about", 120, 0.9, 200], | |
| ["You know what's interesting", 100, 0.8, 200] | |
| ], | |
| inputs=[prompt_input, max_tokens_slider, temperature_slider, top_k_slider] | |
| ) | |
| # Connect the generate button | |
| generate_btn.click( | |
| fn=generate_text, | |
| inputs=[prompt_input, max_tokens_slider, temperature_slider, top_k_slider], | |
| outputs=output_text | |
| ) | |
| if __name__ == "__main__": | |
| print("Starting Gradio interface...") | |
| print("Will be available at http://localhost:7860") | |
| print("Use share=True for public link") | |
| # Launch for Hugging Face Spaces | |
| demo.launch() |